У меня большой набор данных, который не помещается в памяти, и он имеет несколько входов. Вот почему я создал свой собственный генератор. Но затем я хотел расширить свои данные с помощью ImageDataGenerator Я столкнулся с проблемой. Я не знаю, как объединить оба генератора.
То, что я сделал до сих пор:
def data_gen( batch_size= None, nb_epochs=None, sess=None):
dataset = tf.data.TFRecordDataset(training_filenames)
dataset = dataset.map(_parse_function_all)
dataset = dataset.shuffle(buffer_size= 1000 + 4* batch_size)
dataset = dataset.batch(batch_size).repeat()
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
for i in range(nb_epochs):
sess.run(iterator.initializer)
while True:
try:
next_val = sess.run(next_element)
images_a = next_val[0][:, 0]
images_b = next_val[0][:, 1]
labels = next_val[1]
yield [images_a, images_b], labels
except tf.errors.OutOfRangeError:
break
mymodel = Model(input=[input_a, input_b], output=out)
mymodel.compile(loss=loss_both_equal, optimizer=rms, metrics=['accuracy', auc_roc])
data_gen_1 = data_gen(batch_size= batch_size, nb_epochs= 10, sess= sess)
mymodel.fit_generator(generator= data_gen_1, epochs = epochs,
steps_per_epoch=335,
callbacks=[tensorboard, alphaChanger])
Итак, если я хочу сделать какое-то дополнение с помощью DataImageGenerator, как я могу объединить свой собственный генератор с DataIamgeGenerator?