При тестировании функции для вычисления некоторых значений регрессии я заметил, что значения, прогнозируемые function
, не являются такими, какими они должны быть. Когда я выполняю подгонку значений другим способом, я получаю правильные значения.
- Мое уравнение регрессии (A = x1; B = x2):
Как мне написать функцию f
для правильного вычисления значений?
Мой код для function
:
A = seq(5, 8, 0.2)
B = seq(30, 70, length.out = length(A))
f <- function(A,B) 281.5786111-39.2014931*A-2.9013646*B+0.5666979*A*B
dadosz <- list(A = A, B = B)
gridz <- expand.grid(dadosz)
gridz[, "fit"] <- f(A, B)
library(lattice)
wireframe(fit ~ A * B, data = gridz,
panel.aspect = 0.5,
zoom = 0.8,
screen = list(z = 215, x = -60),
scales=list(arrows = FALSE),
drape = TRUE,
col.regions = heat.colors(100, alpha = 1))
Использование пакета и манипуляций с данными для выполнения той же работы, но с целью сделать код воспроизводимым. Обратите внимание, что приведенные здесь значения являются правильными.
library(dplyr)
library(purrr)
library(broom)
term <- c("(Intercept)", "A", "B", "A:B")
estimate <- c(281.5786111, -39.2014931, -2.9013646, 0.5666979)
std.error <- c(58.35909505, 7.47207607, 0.63829627, 0.05755324)
statistic <- c(4.824931, -5.246399, -4.545483, 9.846500)
p.value <- c(1.583042e-04, 6.565454e-05, 2.865084e-04, 1.941398e-08)
coe <- data.frame(term, estimate, std.error, statistic, p.value)
exp <- expand.grid(A = A, B = B) %>%
mutate(bo = as.numeric(1)) %>%
mutate(ult = A*B) %>%
select(bo, A, B, ult) %>%
as.matrix()
m_beta <- coe$estimate
reg <- t(m_beta %*% t(exp))
exp <- cbind(exp, reg) %>%
as.data.frame() %>%
rename(reg = V5)
wireframe(reg ~ A * B, data = exp,
panel.aspect = 0.5,
zoom = 0.8,
screen = list(z = 310, x = -70),
scales=list(arrows = FALSE),
drape = TRUE,
col.regions = heat.colors(100, alpha = 1))
Поскольку у меня возникли сомнения, я протестировал его в Excel и на интернет-сайте и снова проверил, что ошибка в function
.