Попытка # 1
s["order_id"].apply(lambda x: int(x) if pd.notnull(x) else np.nan)
Попытка # 2
def to_int(x):
if(pd.notnull(x)):
return int(x)
Попытка # 3
s["order_id"] = s.loc[pd.notnull(s["order_id"]),"order_id].astype(int)
Все они возвращают серию, в которой значения по-прежнему отформатированы как числа с плавающей запятой.
Мне интересно, могу ли я использовать функцию обновления или воспользоваться переиндексацией.
Попытка использовать решение для индексирования:
null = np.nan
data = {"time":{"0":1528971021539,"1":1529289904697,"2":1529572773525,"3":1529892602301,"4":1530082881098,"5":1530069453264,"6":1528985491630,"7":1529236762719,"8":1529475504491,"9":1529814085541,"10":1529906568681,"11":1530160346468,"12":1529833559160,"13":1530051985183,"14":1530240956273,"15":1529794554495,"16":1529892989425,"17":1529386510176,"18":1529118607780,"19":1529404958912,"20":1529812956409,"21":1530012703548,"22":1527815420250,"23":1527826735070,"24":1527832343938,"25":1527853694229,"26":1527889066223,"27":1527986243670,"28":1528070794031,"29":1528149294729,"30":1528158483701,"31":1528172242288,"32":1528173686892,"33":1528174729282,"34":1528175624472,"35":1528184014365,"36":1528184994544,"37":1528199211274,"38":1528204822424,"39":1528236692102,"40":1528246124079,"41":1528251449061,"42":1528254158311,"43":1528324045380,"44":1528409837346,"45":1528429172972,"46":1528453372400,"47":1528525996756,"48":1528530493509,"49":1528539093472},"user_id":{"0":1754627236948496,"1":4702200191313171,"2":4778254911976758,"3":8293985621789157,"4":5156436454415407,"5":4445821205748907,"6":6872300957263521,"7":579402494860,"8":2010389994610194,"9":3378398685582335,"10":2923987501904097,"11":7254681572754712,"12":2280706641994510,"13":5853777483445659,"14":1790488830140089,"15":4649841298300342,"16":8296801793054868,"17":6074985077237804,"18":7512067556495704,"19":7449962479289671,"20":931159100938705,"21":4303206141550631,"22":4931136210605885,"23":910152652690726,"24":213367265258802,"25":59665205254502,"26":7375134691043656,"27":5112755499047871,"28":1511225869347102,"29":6553192205018264,"30":5758319280291333,"31":5654341500640968,"32":8149628703137465,"33":6808112291514009,"34":3363098540596606,"35":4205809380744263,"36":3662128280212665,"37":986809097179824,"38":3834989038766064,"39":3561701388137551,"40":3363098540596606,"41":7998995390673240,"42":188780187662080,"43":290955994841187,"44":7996996554339358,"45":2624074855751159,"46":8317830532715985,"47":4819555707307085,"48":6662202062763635,"49":1363740504674809},"order_id":{"0":1161.0,"1":1175.0,"2":1186.0,"3":1200.0,"4":1217.0,"5":1213.0,"6":1162.0,"7":1171.0,"8":1183.0,"9":1192.0,"10":1205.0,"11":1219.0,"12":1195.0,"13":1212.0,"14":1221.0,"15":1190.0,"16":1201.0,"17":1166.0,"18":1167.0,"19":1181.0,"20":1191.0,"21":1211.0,"22":null,"23":null,"24":null,"25":null,"26":null,"27":null,"28":null,"29":null,"30":null,"31":null,"32":null,"33":null,"34":null,"35":null,"36":null,"37":null,"38":null,"39":null,"40":null,"41":null,"42":null,"43":null,"44":null,"45":null,"46":null,"47":null,"48":null,"49":null}}
s = pd.DataFrame(data=data)
orders = {"order_id":{"0":1161,"1":1175,"2":1205,"3":1219,"4":1195,"5":1212,"6":1221,"7":1190,"8":1201,"9":1166,"10":1167,"11":1181,"12":1186,"13":1191,"14":1211,"15":1200,"16":1217,"17":1213,"18":1162,"19":1171,"20":1183,"21":1192},"order_total":{"0":"206.50","1":"369.00","2":"313.65","3":"158.74","4":"164.50","5":"156.83","6":"184.50","7":"137.50","8":"120.00","9":"85.00","10":"369.00","11":"156.83","12":"184.50","13":"191.25","14":"297.50","15":"180.00","16":"394.40","17":"75.00","18":"191.25","19":"386.33","20":"95.00","21":"200.00"}}
o = pd.DataFrame(data=orders)
orders = s.loc[pd.notnull(s["order_id"])]
orders["order_id"] = orders["order_id"].astype(int)
s["order_total"] = np.nan
s.update(orders.merge(o, on='order_id', how='left').set_index(o.index)["order_total"])