я делаю двоичную классификацию в тензорном потоке NN без кодирования меток .. все хорошо, кроме функции точности всегда возвращают 1,0
Выход
Эпоха 0 завершена из 10 потерь: 5536.991802096367
Эпоха 1 завершена из 10 потерь: 1777.5951525866985
Эпоха 2 завершена из 10 потерь: 1442.1777643710375
Эпоха 3 завершена из 10 потерь: 1315.4084038436413
,
,
.
Эпоха 9 завершена из 10 потерь: 968.3492169082165
Точность: 1,0
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.dates as mdates
import numpy as np
from matplotlib import style
import csv,math,time
from sklearn import preprocessing, cross_validation
import tensorflow as tf
df2=pd.read_csv("Book.csv",encoding="latin-1",index_col=0)
df2['iday'].replace(0,1,inplace=True)
df2['imonth'].replace(0,1,inplace=True)
df2['Datetime'] = pd.to_datetime(dict(year=df2.iyear, month=df2.imonth, day=df2.iday))
print(df2.tail());
df=df2[['Datetime','country','longitude','latitude','suicide','attacktype1','targtype1','nkill','nwound','weaptype1','success']]
df.set_index('Datetime', inplace=True)
df.fillna(value=-99999, inplace=True) #cleaning data!!!
XX = np.array(df.drop(['success'], 1)) #
XX = preprocessing.scale(XX) #dividing dataset into features and label
#df.dropna(inplace=True) #dropping those rows which contain nulls
yy = np.array(df['success'])
yy=yy.reshape(-1,1)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(XX, yy,random_state=2) #training
n_nodes_hl1 = 100
n_nodes_hl2 = 100
n_nodes_hl3 = 100
n_input=X_train.shape[1]
print(X_train.shape)
print(yy.shape)
n_classes=y_train.shape[1]
batch_size = 100
x = tf.placeholder('float', [None, n_input])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([n_input, n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes])),}
l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
# OLD VERSION:
#cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
# NEW:
cost = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
# OLD:
#sess.run(tf.initialize_all_variables())
# NEW:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
total_batch = int(len(X_train) / batch_size)
print(total_batch)
x_batches = np.array_split(X_train, total_batch)
y_batches = np.array_split(y_train, total_batch)
epoch_loss = 0
for i in range(total_batch):
epoch_x, epoch_y =x_batches[i], y_batches[i]
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y:
epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out
of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:X_test, y:y_test}))
train_neural_network(x)