Keras находит неправильное количество классов в папках с поездами и тестовыми наборами. У меня есть 3 класса, но он продолжает говорить, что есть 4. Кто-нибудь может мне помочь, пожалуйста?
Вот код:
cnn = Sequential()
cnn.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(32, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(64, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(128, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
#Full connection
cnn.add(Dense(units = 64, activation = 'relu'))
cnn.add(Dense(units = 64, activation = 'relu'))
cnn.add(Dense(units = 3, activation = 'softmax'))
# Compiling the CNN
cnn.compile(optimizer = OPTIMIZER, loss = 'categorical_crossentropy', metrics = ['accuracy'])
#Fitting
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = tgt_size,
batch_size = batch_size,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = tgt_size,
batch_size = batch_size,
class_mode = 'categorical')
И ошибка:
Found 12000 images belonging to 4 classes.
Found 3000 images belonging to 4 classes.
Epoch 1/10
---------------------------------------------------------------------------
ValueError: Error when checking target: expected dense_15 to have 4 dimensions, but got array with shape (3, 4)
EDIT:
Это происходит только с ноутбуком Jupyter в Google Cloud. Когда я использую Spyder локально, он находит правильное количество классов.