Анализ рынка проекта - криптовалюты - PullRequest
0 голосов
/ 01 мая 2018
+#I just started to code for some cryptocurrencies analysis. But I just encounterd an issue with the code.
    _____________________________________________________________________________

        library(magrittr)
        library(dplyr)
        library(tidyverse)
        library(crypto)
        library(lubridate)
        library(xts)
        library(quantmod)
        library(tidyr)

        df <- getCoins(limit = 50)

        yourfunction <- function(df, frequency = NULL) {
          freq        <- frequency
          df$date     <- lubridate::round_date(df$date, freq)
          data        <-
            df %>% dplyr::group_by(date, slug, symbol, name, ranknow) %>%
            dplyr::summarise(
              open   = dplyr::first(open),
              high   = max(high),
              low    = min(low),
              close  = dplyr::last(close),
              volume = sum(volume),
              market = dplyr::last(market))
          data$volume <- round(data$volume, digits = 0)
          data$market <- round(data$market, digits = 0)
          data        <- as.data.frame(data)
          results <- xts::xts(data[, 2:ncol(data)], as.POSIXct(data[, 1], format =
                                                                 "%d.%m.%Y %H:%M:%S"))
          return(results)
        }

        #### IF NO ERRORS IN ABOVE RUN THESE INDIVIDUALLY------
week_xts  <- yourfunction(df, frequency = "week")
str(week_xts)

as.tbl(week_xts) %>%
  select(date, slug, open) %>%
  spread(slug, open) %>%
  tail()

#### IF NO ERRORS IN ABOVE RUN THESE INDIVIDUALLY------
month_xts <- yourfunction(df, frequency = "month")
str(month_xts)

as.tbl(month_xts) %>%
  select(date, slug, open) %>%
  spread(slug, open) %>%
  tail()
########################



#Making daily, weekly and monthly open for ten biggest coins

daily_open <- spread(df[,c(1,4,6)],slug,open)
weekly_open <- spread(week_xts[,c(1, 2, 6)],slug,open)
monthly_open <- spread(month_xts[,c(1, 2, 6)],slug,open)

ten_biggest <- c(list_of_coins[1:10,"slug"])

daily_open <- daily_open[,c("date",ten_biggest)]
weekly_open <- weekly_open[,c("date",ten_biggest)]
monthly_open <- monthly_open[,c("date",ten_biggest)]


#Making daily, weekly and monthly high for ten biggest coins

daily_high <- spread(df[,c(1,4,7)],slug,high)
weekly_high <- spread(week_xts[,c(1,2,7)],slug,high)
monthly_high <- spread(month_xts[,c(1,2,7)],slug,high)

daily_high <- daily_high[,c("date",ten_biggest)]
weekly_high <- weekly_high[,c("date",ten_biggest)]
monthly_high <- monthly_high[,c("date",ten_biggest)]

#Making daily, weekly and monthly low for ten biggest coins

daily_low <- spread(df[,c(1,4,8)],slug,low)
weekly_low <- spread(week_xts[,c(1,2,8)],slug,low)
monthly_low <- spread(month_xts[,c(1,2,8)],slug,low)

daily_low <- daily_low[,c("date",ten_biggest)]
weekly_low <- weekly_low[,c("date",ten_biggest)]
monthly_low <- monthly_low[,c("date",ten_biggest)]

#Making daily, weekly and monthly close for ten biggest coins

daily_close <- spread(df[,c(1,4,9)],slug,close)
weekly_close <- spread(week_xts[,c(1,2,9)],slug,close)
monthly_close <- spread(month_xts[,c(1,2,9)],slug,close) 

daily_close <- daily_close[,c("date",ten_biggest)]
weekly_close <- weekly_close[,c("date",ten_biggest)]
monthly_close <- monthly_close[,c("date",ten_biggest)]


#Making daily, weekly and monthly volume for ten biggest coins

daily_volume <- spread(df[,c(1,4,10)],slug,volume)
weekly_volume <- spread(week_xts[,c(1,2,10)],slug,volume)
monthly_volume <- spread(month_xts[,c(1,2,10)],slug,volume)

daily_volume <- daily_volume[,c("date",ten_biggest)]
weekly_volume <- weekly_volume[,c("date",ten_biggest)]
monthly_volume <- monthly_volume[,c("date",ten_biggest)]


#Making daily,weekly and monthly market for ten biggest coins

daily_market <- spread(df[,c(1,4,11)],slug,market)
weekly_market <- spread(week_xts[,c(1,2,11)],slug,market)
monthly_market <- spread(month_xts[,c(1,2,11)],slug,market)

daily_market <- daily_market[,c("date",ten_biggest)]
weekly_market <- weekly_market[,c("date",ten_biggest)]
monthly_market <- monthly_market[,c("date",ten_biggest)]


#Doesn't work
weekly_open_returns <- periodReturn(weekly_open, period="daily", subset=NULL, type="arithmetic",leading="TRUE")
weekly_open_returns <- Return.calculate(weekly_open)

Я хотел бы создать фрейм данных для каждого типа данных (открытие, максимум, закрытие, объем, рынок, закрытие и распределение) для ежедневных, ежемесячных и еженедельных частот. Эти фреймы данных должны быть построены таким образом, чтобы каждый столбец представлял одну валюту, а строки представляли собой наблюдения. Однако, когда я пытаюсь использовать функцию спреда для еженедельных и ежемесячных частот, чтобы сделать это, это выдает ошибку. Как мне поступить?

Заранее спасибо за помощь. Хорошего дня.

Ошибки:

    > weekly_open_returns <- periodReturn(weekly_open, period="daily", subset=NULL, type="arithmetic",leading="TRUE")
Error in try.xts(x) : 
  Error in as.POSIXlt.character(x, tz, ...) :   character string is not in a standard unambiguous format
> weekly_open_returns <- Return.calculate(weekly_open)
Error in checkData(prices, method = "xts") : 
  The data cannot be converted into a time series.  If you are trying to pass in names from a data object with one column, you should use the form 'data[rows, columns, drop = FALSE]'.  Rownames should have standard date formats, such as '1985-03-15'.

(из комментария:)

Я хотел бы создать фрейм данных для каждого типа данных (открытие, максимум, закрытие, объем, рынок, закрытие и распределение) для ежедневных, ежемесячных и еженедельных частот. Эти фреймы данных должны быть построены таким образом, чтобы каждый столбец представлял одну валюту, а строки представляли собой наблюдения. Однако, когда я пытаюсь использовать функцию спреда для еженедельных и ежемесячных частот, чтобы сделать это, это выдает ошибку. Как мне поступить? Заранее спасибо за помощь. Хорошего дня. - MP PM 28 минут назад

Ответы [ 2 ]

0 голосов
/ 13 мая 2018

Спасибо за ваш ценный вклад. Я отредактировал код (вы можете найти новый в первом посте), потому что у меня есть еще одна проблема, которая возникла, когда я хотел вычислить доход. Кроме того, я буду более чем счастлив, если у кого-то будут какие-то намеки. Возможно, до вторника я решу свою проблему с расчетом возврата.

0 голосов
/ 01 мая 2018

После тестирования кода ошибка достаточно ясна: tidyr::spread работает с тибблами, но у вас есть класс [1] "xts" "zoo". Кроме того, вероятно, из-за шага xts это все character, что означает, что все ваши числа в week_xts являются строками. Я вижу, что, по вашему мнению, вы делаете с daily_xts (post- spread), но большая часть данных будет NA, поскольку большинство валют не присутствуют до тех пор, пока в данных не будет задержек. Это намеренно?

Частично проблема заключается в том, что вы используете xts: он не возвращает data.frame, он возвращает вектор или matrix, как показано здесь:

str(week_xts)
# An 'xts' object on 2013-04-27 17:00:00/2018-04-28 17:00:00 containing:
#   Data: chr [1:4593, 1:10] "bitcoin" "litecoin" "bitcoin" "litecoin" "bitcoin" ...
#  - attr(*, "dimnames")=List of 2
#   ..$ : NULL
#   ..$ : chr [1:10] "slug" "symbol" "name" "ranknow" ...
#   Indexed by objects of class: [POSIXct,POSIXt] TZ: 
#   xts Attributes:  
#  NULL

Это говорит о том, что все character. Так что, если вы делаете

head(week_xts[,1:5])
#                     slug       symbol name       ranknow open          
# 2013-04-27 17:00:00 "bitcoin"  "BTC"  "Bitcoin"  " 1"    "  135.300000"
# 2013-04-27 17:00:00 "litecoin" "LTC"  "Litecoin" " 7"    "    4.300000"
# 2013-05-04 17:00:00 "bitcoin"  "BTC"  "Bitcoin"  " 1"    "  116.380000"
# 2013-05-04 17:00:00 "litecoin" "LTC"  "Litecoin" " 7"    "    3.780000"
# 2013-05-11 17:00:00 "bitcoin"  "BTC"  "Bitcoin"  " 1"    "  113.200000"
# 2013-05-11 17:00:00 "litecoin" "LTC"  "Litecoin" " 7"    "    3.400000"

вы увидите, что числа, которые вы хотите, на самом деле являются строками.

Я предлагаю, чтобы, возможно, yourfunction не делал xts::xts перед вами spread вещей. вместо:

yourfunction <- function(df, frequency = NULL) {
  # ...
  return(data)
}
week_xts  <- yourfunction(df, frequency = "week")
str(week_xts)
# 'data.frame': 4593 obs. of  11 variables:
#  $ date   : Date, format: "2013-04-28" "2013-04-28" ...
#  $ slug   : chr  "bitcoin" "litecoin" "bitcoin" "litecoin" ...
#  $ symbol : chr  "BTC" "LTC" "BTC" "LTC" ...
#  $ name   : chr  "Bitcoin" "Litecoin" "Bitcoin" "Litecoin" ...
#  $ ranknow: num  1 7 1 7 1 7 1 7 1 7 ...
#  $ open   : num  135.3 4.3 116.38 3.78 113.2 ...
#  $ high   : num  147.49 4.57 125.6 4.04 122 ...
#  $ low    : num  107.72 3.52 79.1 2.4 103.5 ...
#  $ close  : num  116.99 3.8 113.57 3.41 114.22 ...
#  $ volume : num  0 0 0 0 0 0 0 0 0 0 ...
#  $ market : num  1542820000 73901200 1219450000 57196300 1242760000 ...

Оттуда:

as.tbl(week_xts) %>%
  select(date, slug, open) %>%
  spread(slug, open) %>%
  tail()
# # A tibble: 6 x 51
#   date        `0x`  aelf aeternity `binance-coin` bitcoin `bitcoin-cash`
#   <date>     <dbl> <dbl>     <dbl>          <dbl>   <dbl>          <dbl>
# 1 2018-03-25 0.583 0.633      1.75           10.0   8939.          1033.
# 2 2018-04-01 0.635 0.625      1.64           11.7   7979.           862.
# 3 2018-04-08 0.521 0.519      1.43           12.2   6849.           649.
# 4 2018-04-15 0.597 0.895      1.47           12.4   6955.           666.
# 5 2018-04-22 0.923 1.11       1.86           12.3   8159.           891.
# 6 2018-04-29 1.01  1.02       2.3            13.4   8867.          1290.
# # ... with 44 more variables: `bitcoin-diamond` <dbl>, `bitcoin-gold` <dbl>,
# #   `bitcoin-private` <dbl>, bitshares <dbl>, `bytecoin-bcn` <dbl>,
# #   bytom <dbl>, cardano <dbl>, dash <dbl>, decred <dbl>, digixdao <dbl>,
# #   dogecoin <dbl>, eos <dbl>, ethereum <dbl>, `ethereum-classic` <dbl>,
# #   icon <dbl>, iota <dbl>, lisk <dbl>, litecoin <dbl>, loopring <dbl>,
# #   maker <dbl>, mixin <dbl>, monero <dbl>, nano <dbl>, nem <dbl>, neo <dbl>,
# #   omisego <dbl>, ontology <dbl>, populous <dbl>, qtum <dbl>, rchain <dbl>,
# #   ripple <dbl>, siacoin <dbl>, status <dbl>, steem <dbl>, stellar <dbl>,
# #   stratis <dbl>, tether <dbl>, tron <dbl>, vechain <dbl>, verge <dbl>,
# #   wanchain <dbl>, waves <dbl>, zcash <dbl>, zilliqa <dbl>

(я показываю tail этого, потому что большинство ранних дат пусто для большинства валют.)

Примечание: я предлагаю вам использовать select(...) и имена столбцов вместо индексов; Вы использовали week_xts[,c(1,5)], что соответствует date и open, да, но это не совсем ясно, не глядя на данные. Кроме того, пропустив конверсию xts, теперь c(1,2,6) фиксирует дату, слаг и открытие.

Интересно, стоит ли вам подумать об использовании xts::xts, хотя с данными slug вы, скорее всего, все равно будете конвертировать все числа в character.


20 записей последней даты, если кто-то еще хочет быстро взглянуть на это:

> dput(head(filter(df, date==tail(date,1)),n=20))
structure(list(slug = c("bitcoin", "ethereum", "ripple", "bitcoin-cash", 
"eos", "cardano", "litecoin", "stellar", "tron", "neo", "iota", 
"dash", "monero", "nem", "tether", "vechain", "ethereum-classic", 
"qtum", "omisego", "icon"), symbol = c("BTC", "ETH", "XRP", "BCH", 
"EOS", "ADA", "LTC", "XLM", "TRX", "NEO", "MIOTA", "DASH", "XMR", 
"XEM", "USDT", "VEN", "ETC", "QTUM", "OMG", "ICX"), name = c("Bitcoin", 
"Ethereum", "Ripple", "Bitcoin Cash", "EOS", "Cardano", "Litecoin", 
"Stellar", "TRON", "NEO", "IOTA", "Dash", "Monero", "NEM", "Tether", 
"VeChain", "Ethereum Classic", "Qtum", "OmiseGO", "ICON"), date = structure(c(17651, 
17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 
17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 
17651), class = "Date"), ranknow = c(1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), open = c(9426.11, 
689.76, 0.871404, 1440.96, 21.64, 0.364297, 153.65, 0.458688, 
0.089656, 92.15, 2.04, 498.44, 256.35, 0.42658, 0.997553, 4.83, 
21.84, 23.15, 18.05, 4.69), high = c(9477.14, 694.44, 0.876788, 
1440.96, 21.64, 0.364297, 154.08, 0.460128, 0.101197, 94.76, 
2.05, 499.43, 259.07, 0.42658, 1.01, 4.83, 22.95, 25.6, 18.06, 
4.69), low = c(9166.81, 666.12, 0.831208, 1339.36, 16.86, 0.336625, 
147.87, 0.417446, 0.086102, 82.86, 1.94, 472.02, 239.08, 0.403889, 
0.992921, 4.37, 21.42, 22.12, 16.81, 4.26), close = c(9240.55, 
669.92, 0.837938, 1350.05, 17.58, 0.343318, 148.48, 0.424659, 
0.093777, 84.27, 1.96, 472.77, 242.46, 0.40888, 0.998919, 4.49, 
21.68, 22.64, 16.95, 4.34), volume = c(8673920000, 2853100000, 
575364000, 753114000, 4073370000, 298712000, 341397000, 81453300, 
1749640000, 377385000, 61762500, 118497000, 103574000, 25523800, 
4498440000, 109782000, 351049000, 414455000, 68967800, 94284100
), market = c(160302000000, 68376400000, 34112200000, 24642000000, 
17849100000, 9445160000, 8651810000, 8518430000, 5894710000, 
5990010000, 5676530000, 4006280000, 4096790000, 3839220000, 2411230000, 
2539730000, 2215850000, 2050300000, 1841910000, 1815430000), 
    close_ratio = c(0.2376, 0.1342, 0.1477, 0.1052, 0.1506, 0.2419, 
    0.0982, 0.169, 0.5084, 0.1185, 0.1818, 0.0274, 0.1691, 0.22, 
    0.3512, 0.2609, 0.1699, 0.1494, 0.112, 0.186), spread = c(310.33, 
    28.32, 0.05, 101.6, 4.78, 0.03, 6.21, 0.04, 0.02, 11.9, 0.11, 
    27.41, 19.99, 0.02, 0.02, 0.46, 1.53, 3.48, 1.25, 0.43)), .Names = c("slug", 
"symbol", "name", "date", "ranknow", "open", "high", "low", "close", 
"volume", "market", "close_ratio", "spread"), row.names = c(NA, 
20L), class = "data.frame")
...