Я работаю в R
и пытаюсь создать кумулятивную кривую обнаружения данных о звонках летучих мышей. Мы совершаем два визита в год, и что нас действительно интересует, так это то, нужно ли нам делать два визита или мы можем сойти с рук, просто совершив одно. Для этого мы хотели построить график совокупного коэффициента повторного поимки / обнаружения для первого и второго посещения и посмотреть, сильно ли они отличаются. Таким образом, мы можем со временем увидеть, сможем ли мы даже за одно посещение записать большинство летучих мышей, использующих пещеры.
Я составил график совокупного коэффициента захвата с течением времени (всего один год, добавленный к итогу следующего), но я просто пытаюсь взглянуть на совокупный коэффициент повторного поимки уникальных особей с течением времени.
Подвыборка данных приведена ниже. У нас есть наш полевой сезон (год), уникальный код звонка для каждой летучей мыши и было ли это посещение один или два.
Field.season Ring_Number visit_number
184 28 m3061 1
185 28 m4653 1
186 28 m4653 1
187 28 m5072 1
188 28 m5865 1
189 28 m5930 1
190 28 m8900 1
191 28 m8932 1
192 28 m9010 1
193 28 m9174 1
194 28 m9179 1
195 28 m9180 1
196 28 m9187 1
197 28 m9188 1
198 28 m9189 1
199 28 m9190 1
200 28 m9191 1
201 28 m9192 1
202 28 m9193 1
203 28 m9194 1
204 28 m9195 1
205 28 m9196 1
206 28 m9197 1
207 28 m9198 1
208 28 m9199 1
209 28 m9199 1
210 28 x301 1
211 28 x303 1
212 28 x322 1
213 28 x332 1
214 28 m5910 1
215 28 m7023 1
216 28 m8936 1
217 28 x305 1
218 28 x307 1
219 28 x316 1
220 28 x320 1
221 28 x329 1
222 28 x330 1
223 28 x341 1
224 28 x407 1
225 28 x408 1
226 28 x409 1
227 28 x410 1
228 28 x411 1
229 28 x412 1
230 28 x413 1
231 28 x414 1
232 28 x415 1
233 28 x416 1
234 28 x417 1
235 28 x418 1
236 28 x419 1
237 28 x421 1
238 28 x422 1
239 28 x423 1
240 28 x424 1
241 28 x425 1
242 28 x426 1
243 28 x427 1
244 28 x428 1
245 28 x429 1
246 28 x430 1
247 28 x431 1
248 28 x432 1
249 28 x434 1
250 28 x450 1
251 28 x496 1
252 28 x497 1
253 28 x499 1
254 28 m5088 1
255 28 m5910 1
256 28 m5924 1
257 28 m5931 1
258 28 m5935 1
259 28 m5953 1
260 28 m5992 1
261 28 m8880 1
262 28 m8881 1
263 28 x302 1
264 28 x305 1
265 28 x311 1
266 28 x311 1
267 28 x315 1
268 28 x333 1
269 28 x338 1
270 28 x341 1
271 28 x408 1
272 28 x410 1
273 28 x412 1
274 28 x414 1
275 28 x415 1
276 28 x416 1
277 28 x418 1
278 28 x426 1
279 28 x430 1
280 28 x434 1
281 28 x435 1
282 28 x436 1
283 28 x437 1
284 28 x438 1
285 28 x439 1
286 28 x440 1
287 28 x441 1
288 28 x442 1
289 28 x443 1
290 28 x444 1
291 28 x445 1
292 28 x447 1
293 28 x448 1
294 28 x497 1
295 28 x500 1
296 28 m3504 2
297 28 m4584 2
298 28 m5059 2
299 28 m5910 2
300 28 m5953 2
301 28 m7023 2
302 28 m8909 2
303 28 m8936 2
304 28 x304 2
305 28 x327 2
306 28 x333 2
307 28 x338 2
308 28 x341 2
309 28 x351 2
310 28 x352 2
311 28 x353 2
312 28 x354 2
313 28 x355 2
314 28 x356 2
315 28 x357 2
316 28 x358 2
317 28 x408 2
318 28 x412 2
319 28 x418 2
320 28 x426 2
321 28 x429 2
322 28 x431 2
323 28 x432 2
324 28 x438 2
325 28 x439 2
326 28 x448 2
327 28 x449 2
328 28 x450 2
329 28 x497 2
330 28 x498 2
331 28 x500 2
339 29 m4885 1
340 29 m6912 1
341 29 m8993 1
342 29 m9019 1
343 29 m9178 1
344 29 x405 1
345 29 x421 1
346 29 m3504 1
347 29 m5103 1
348 29 m5954 1
349 29 m7083 1
350 29 m8874 1
351 29 m8935 1
352 29 m8938 1
353 29 m8995 1
354 29 m9582 1
355 29 x358 1
356 29 x410 1
357 29 x414 1
358 29 x426 1
359 29 x438 1
360 29 x451 1
361 29 x452 1
362 29 x454 1
363 29 x455 1
364 29 x456 1
365 29 x457 1
366 29 x458 1
367 29 x459 1
368 29 x460 1
369 29 x461 1
370 29 x462 1
371 29 x463 1
372 29 x464 1
373 29 x465 1
374 29 x466 1
375 29 x467 1
376 29 x468 1
377 29 x469 1
378 29 x470 1
379 29 x471 1
380 29 x472 1
381 29 x473 1
382 29 x474 1
383 29 x475 1
384 29 x476 1
385 29 m5210 1
386 29 m5920 1
387 29 m5931 1
388 29 m5935 1
389 29 m8936 1
390 29 m9175 1
391 29 m9200 1
392 29 x304 1
393 29 x305 1
394 29 x327 1
395 29 x345 1
396 29 x351 1
397 29 x353 1
398 29 x354 1
399 29 x359 1
400 29 x360 1
401 29 x362 1
402 29 x363 1
403 29 x364 1
404 29 x365 1
405 29 x366 1
406 29 x367 1
407 29 x368 1
408 29 x369 1
409 29 x371 1
410 29 x372 1
411 29 x373 1
412 29 x374 1
413 29 x375 1
414 29 x376 1
415 29 x377 1
416 29 x378 1
417 29 x379 1
418 29 x380 1
419 29 x381 1
420 29 x382 1
421 29 x383 1
422 29 x384 1
423 29 x385 1
424 29 x386 1
425 29 x386 1
426 29 x387 1
427 29 x389 1
428 29 x390 1
429 29 x391 1
430 29 x392 1
431 29 x393 1
432 29 x394 1
433 29 x395 1
434 29 x396 1
435 29 x397 1
436 29 x398 1
437 29 x399 1
438 29 x400 1
439 29 x409 1
440 29 x417 1
любая помощь будет принята с благодарностью.
EDIT:
Чтобы привести пример того, что я пытался, но не знаю, является ли это вообще правильным кодом, включает:
df1 <- df[which(df$visit_number == 1), ]
df2 <- df[which(df$visit_number == 2), ]
library(asnipe)
individuals1 <- data.frame(D = df1$Ring_Number, GROUP = df1$Field.season)
gbi1 <- get_group_by_individual(individuals1, data_format = "individuals")
library(vegan)
sp1 <- specaccum(gbi1)
sp2 <- specaccum(gbi1, "random")
sp2
summary(sp2)
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")
## Fit Lomolino model to the exact accumulation
mod1 <- fitspecaccum(sp1, "lomolino")
coef(mod1)
fitted(mod1)
plot(sp1)
## Add Lomolino model using argument 'add'
plot(mod1, add = TRUE, col=2, lwd=2)
## Fit Arrhenius models to all random accumulations
mods <- fitspecaccum(sp2, "arrh")
plot(mods, col="hotpink")
boxplot(sp2, col = "yellow", border = "blue", lty=1, cex=0.3, add= TRUE)
## Use nls() methods to the list of models
sapply(mods$models, AIC)
#this was then done for df2 (gbi2) for comparison.
Но я не уверен, что он делает именно то, о чем я думаю.