Зацикливание не обязательно, фильтрация по списку столбцов, также не забудьте для return
:
data_train = pd.DataFrame({'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')})
print (data_train)
A B C D E F
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b
def dummy_conv(data):
names=data.select_dtypes(exclude=['number']).columns
return pd.get_dummies(data[names], drop_first=True)
df = dummy_conv(data_train)
print (df)
A_b A_c A_d A_e A_f F_b
0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 1
4 0 0 0 1 0 1
5 0 0 0 0 1 1
Если хотите конвертировать только не числовые столбцы:
def dummy_conv(data):
return pd.get_dummies(data,drop_first=True)
#same output like
#names=data.select_dtypes(exclude=['number']).columns
#return pd.get_dummies(data,columns=names,drop_first=True)
df = dummy_conv(data_train)
print (df)
B C D E A_b A_c A_d A_e A_f F_b
0 4 7 1 5 0 0 0 0 0 0
1 5 8 3 3 1 0 0 0 0 0
2 4 9 5 6 0 1 0 0 0 0
3 5 4 7 9 0 0 1 0 0 1
4 5 2 1 2 0 0 0 1 0 1
5 4 3 0 4 0 0 0 0 1 1