Зацикливать имена столбцов в get_dummies для панд? - PullRequest
0 голосов
/ 31 августа 2018

Для панд я написал код ниже, чтобы преобразовать все категориальные особенности. Однако после того, как я запустил его на своем наборе данных и проверил типы данных, ничего не изменилось.

Заранее спасибо.

Код:

def dummy_conv(data):
    names=data.select_dtypes(exclude=['number']).columns
    for c in names:
        data=pd.get_dummies(data,columns=[c],drop_first=True)

dummy_conv(data_train)

data_train.dtypes # object features are not converted

1 Ответ

0 голосов
/ 31 августа 2018

Зацикливание не обязательно, фильтрация по списку столбцов, также не забудьте для return:

data_train = pd.DataFrame({'A':list('abcdef'),
                   'B':[4,5,4,5,5,4],
                   'C':[7,8,9,4,2,3],
                   'D':[1,3,5,7,1,0],
                   'E':[5,3,6,9,2,4],
                   'F':list('aaabbb')})

print (data_train)
   A  B  C  D  E  F
0  a  4  7  1  5  a
1  b  5  8  3  3  a
2  c  4  9  5  6  a
3  d  5  4  7  9  b
4  e  5  2  1  2  b
5  f  4  3  0  4  b

def dummy_conv(data):
    names=data.select_dtypes(exclude=['number']).columns

    return pd.get_dummies(data[names], drop_first=True)

df = dummy_conv(data_train)
print (df)
   A_b  A_c  A_d  A_e  A_f  F_b
0    0    0    0    0    0    0
1    1    0    0    0    0    0
2    0    1    0    0    0    0
3    0    0    1    0    0    1
4    0    0    0    1    0    1
5    0    0    0    0    1    1

Если хотите конвертировать только не числовые столбцы:

def dummy_conv(data):
    return pd.get_dummies(data,drop_first=True)
    #same output like
    #names=data.select_dtypes(exclude=['number']).columns
    #return pd.get_dummies(data,columns=names,drop_first=True)
df = dummy_conv(data_train)
print (df)
   B  C  D  E  A_b  A_c  A_d  A_e  A_f  F_b
0  4  7  1  5    0    0    0    0    0    0
1  5  8  3  3    1    0    0    0    0    0
2  4  9  5  6    0    1    0    0    0    0
3  5  4  7  9    0    0    1    0    0    1
4  5  2  1  2    0    0    0    1    0    1
5  4  3  0  4    0    0    0    0    1    1
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...