Как убедиться, что весь код PyTorch полностью использует графический процессор в Google Colab - PullRequest
0 голосов
/ 01 сентября 2018

Я новичок в PyTorch и делал некоторые уроки по CIFAR10, в частности, по Google Colab, так как лично у меня пока нет графического процессора для экспериментов с ним.

Я успешно обучил свою нейронную сеть, но я не уверен, использует ли мой код графический процессор от Colab, потому что время обучения, проведенное с Colab, не намного быстрее, чем у моего MacBook Pro 2014 года (без графического процессора).

Я проверил, и на моем ноутбуке действительно работает Tesla K80, но скорость обучения почему-то низкая. Поэтому я думаю, что мой код не поддерживает синтаксис графического процессора, но я не мог понять, какая это часть.

# install PyTorch
from os import path
from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag
platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag())
accelerator = 'cu80' if path.exists('/opt/bin/nvidia-smi') else 'cpu'
!pip install -q http://download.pytorch.org/whl/{accelerator}/torch-0.4.0-{platform}-linux_x86_64.whl torchvision

import torch
import torch.nn as nn
from torch.optim import Adam
from torchvision import transforms
from torch.autograd import Variable
import torchvision.datasets as datasets
from torch.utils.data import DataLoader, TensorDataset
import matplotlib.pyplot as plt

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)

# hyperparameters
n_epochs = 50
n_batch_size = 200
n_display_step = 200
n_learning_rate = 1e-3
n_download_cifar = True

# import cifar
# more about cifar https://www.cs.toronto.edu/~kriz/cifar.html

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_dataset = datasets.CIFAR10(
                    root="../datasets/cifar", 
                    train=True, 
                    transform=transform,
                    download=n_download_cifar)
test_dataset = datasets.CIFAR10(
                    root="../datasets/cifar", 
                    train=False, 
                    transform=transform)

# create data loader
train_loader = DataLoader(train_dataset, batch_size=n_batch_size, shuffle=True, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=n_batch_size, shuffle=False)

# build CNN
class CNN(nn.Module):

    def __init__(self):
        super(CNN, self).__init__()

        # (3, 32, 32)
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(2, 2))

        # (32, 16, 16)
        self.conv2 = nn.Sequential(
            nn.Conv2d(32, 16, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(2, 2))

        # (16, 8, 8)
        self.out = nn.Linear(16 * 8 * 8, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)
        out = self.out(x)
        return out

net = CNN()
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = Adam(net.parameters(), lr=n_learning_rate)

def get_accuracy(model, loader):
    model.eval()
    n_samples = 0
    n_correct = 0

    with torch.no_grad():
        for step, (x, y) in enumerate(loader):
            x, y = Variable(x).to(device), Variable(y).to(device)
            out = model(x)
            _, pred = torch.max(out, 1)
            n_samples += y.size(0)
            n_correct += (pred == y).sum().item()

    return n_correct / n_samples


def train(model, criterion, optimizer, epochs, train_loader, test_loader):
    for epoch in range(epochs):
        for step, (x, y) in enumerate(train_loader):
            model.train()
            x, y = Variable(x).to(device), Variable(y).to(device)
            out = model(x)
            loss = criterion(out, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if step % n_display_step == 0:
                print("Epoch {:2d} Loss {:.4f} Accuracy (Train | Test) {:.4f} {:.4f}".format(epoch, loss.item(), get_accuracy(model, train_loader), get_accuracy(model, test_loader)))

train(net, criterion, optimizer, n_epochs, train_loader, test_loader)

1 Ответ

0 голосов
/ 02 сентября 2018

Ваш код кажется подходящим, и я запустил его на своем MacBook, компьютере с графическим процессором и Google Colab. Я сравнил время тренировки и мои эксперименты показали, что ваш код оптимизирован для GPU.

Можете ли вы попробовать запустить этот код из этой ветки и посмотреть, сколько ОЗУ GPU выделено для вас? Я предполагаю, что вы дали только 5% использования графического процессора.

С уважением,

Rex.

...