Я пытаюсь классифицировать электронную почту как спам / хам, используя NLTK
Ниже приведены следующие шаги:
Пытается извлечь все токены
Выбор всех функций
Извлечение признаков из совокупности всех уникальных слов и сопоставление
Правда / ложь
- Подготовка данных в наивном байесовском классификаторе
from nltk.classify.util import apply_features
from nltk import NaiveBayesClassifier
import pandas as pd
import collections
from sklearn.model_selection import train_test_split
from collections import Counter
data = pd.read_csv('https://raw.githubusercontent.com/venkat1017/Data/master/emails.csv')
"""fetch array of tuples where each tuple is defined by (tokenized_text, label)
"""
processed_tokens=data['text'].apply(lambda x:([x for x in x.split() if x.isalpha()]))
processed_tokens=processed_tokens.apply(lambda x:([x for x in x if len(x)>3]))
processed_tokens = [(i,j) for i,j in zip(processed_tokens,data['spam'])]
"""
dictword return a Set of unique words in complete corpus.
"""
list = zip(*processed_tokens)
dictionary = Counter(word for i, j in processed_tokens for word in i)
dictword = [word for word, count in dictionary.items() if count == 1]
"""maps each input text into feature vector"""
y_dict = ( [ (word, True) for word in dictword] )
feature_vec=dict(y_dict)
"""Training"""
training_set, testing_set = train_test_split(y_dict, train_size=0.7)
classifier = NaiveBayesClassifier.train(training_set)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\classify\naivebayes.py in train(cls, labeled_featuresets, estimator)
197 for featureset, label in labeled_featuresets:
198 label_freqdist[label] += 1
--> 199 for fname, fval in featureset.items():
200 # Increment freq(fval|label, fname)
201 feature_freqdist[label, fname][fval] += 1
AttributeError: 'str' object has no attribute 'items'
Я сталкиваюсь со следующей ошибкой при попытке обучить корпус уникальных слов