Когда я пытаюсь создать этот звук, генерирующий RNN, я получаю странную ошибку, связанную с моим вводом. Но я действительно не знаю, как я должен интерпретировать ошибку.
Я создаю два входных тензора: шум и метка с тусклым. (100,) и (1,). Затем я встраиваю ярлыки. Затем я создаю ввод пропплера и инициирую ввод модели и возвращаю готовую модель с вводом и выводом.
Ошибка говорит о том, что невозможно уменьшить размеры до 2 с 2 тусклых. вход и что вход будет иметь форму [?, 100], [2], что "не" дело?
Заранее спасибо!
Код:
вызов: build_audio_generator (100, 1)
def build_audio_generator(latent_dim, num_classes):
model = Sequential()
model.add(LSTM(512, input_dim=latent_dim, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(512, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(512))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.summary()
noise = Input(shape=(latent_dim,))
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(num_classes, 100)(label))
model_input = multiply([noise, label_embedding])
sound = model(model_input)
return Model([noise, label], sound)
Ошибка:
Traceback (most recent call last):
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 686, in _call_cpp_shape_fn_impl
input_tensors_as_shapes, status)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 473, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Invalid reduction dimension 2 for input with 2 dimensions. for 'sequential_3/lstm_1/Sum' (op: 'Sum') with input shapes: [?,100], [2] and with comput
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "main.py", line 94, in <module>
main()
File "main.py", line 67, in main
audio_generator = build_audio_generator(latent_dim, num_classes)
File "C:\Users\MrGrimod\Desktop\gan-audio-generator\model.py", line 70, in build_audio_generator
sound = model(model_input)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\engine\topology.py", line 603, in __call__
output = self.call(inputs, **kwargs)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\models.py", line 546, in call
return self.model.call(inputs, mask)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\engine\topology.py", line 2061, in call
output_tensors, _, _ = self.run_internal_graph(inputs, masks)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\engine\topology.py", line 2212, in run_internal_graph
output_tensors = _to_list(layer.call(computed_tensor, **kwargs))
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\layers\recurrent.py", line 2023, in call
initial_state=initial_state)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\layers\recurrent.py", line 540, in call
initial_state = self.get_initial_state(inputs)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\layers\recurrent.py", line 469, in get_initial_state
initial_state = K.sum(initial_state, axis=(1, 2)) # (samples,)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 1242, in sum
return tf.reduce_sum(x, axis=axis, keep_dims=keepdims)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1307, in reduce_sum
name=name)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 4681, in _sum
keep_dims=keep_dims, name=name)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 2958, in create_op
set_shapes_for_outputs(ret)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 2209, in set_shapes_for_outputs
shapes = shape_func(op)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 2159, in call_with_requiring
return call_cpp_shape_fn(op, require_shape_fn=True)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 627, in call_cpp_shape_fn
require_shape_fn)
File "C:\Users\MrGrimod\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 691, in _call_cpp_shape_fn_impl
raise ValueError(err.message)
ValueError: Invalid reduction dimension 2 for input with 2 dimensions. for 'sequential_3/lstm_1/Sum' (op: 'Sum') with input shapes: [?,100], [2] and with computed input tensors: input[1] = <1 2>.