Вы можете использовать GridSearchCV для этого. Вот пример:
# Applying GridSearch to find best parameters
from sklearn.model_selection import GridSearchCV
parameters = [{ 'criterion' : ['gini'], 'splitter':['best','random'], 'min_samples_split':[0.1,0.2,0.3,0.4,0.5],
'min_samples_leaf': [1,2,3,4,5]},
{'criterion' : ['entropy'], 'splitter':['best','random'], 'min_samples_split':[0.1,0.2,0.3,0.4,0.5],
'min_samples_leaf': [1,2,3,4,5]} ]
gridsearch = GridSearchCV(estimator = classifier, param_grid = parameters,refit= False, scoring='accuracy', cv=10)
gridsearch = gridsearch.fit(x,y)
optimal_accuracy = gridsearch.best_score_
optimal_parameters = gridsearch.best_params_
Но для param_grid
из GridSearchCV
вы должны передать словарь имени параметра и значения для вашего классификатора. Например, такой классификатор:
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(random_state=0, presort=True,
criterion='entropy')
classifier = classifier.fit(x_train,y_train)
Затем, найдя лучшие параметры по GridSearchCV
, вы применяете их к своей модели.