Точность CV График точности CV Точность теста
Я пытаюсь реализовать Naive Bayes в наборе данных по изысканным продуктам питания Amazon. Можете ли вы просмотреть код и сказать, почему существует такая большая разница между точностью перекрестной проверки и точностью проверки?
Концептуально что-то не так с кодом ниже?
#BOW()
from sklearn.feature_extraction.text import CountVectorizer
bow = CountVectorizer(ngram_range = (2,3))
bow_vect = bow.fit(X_train["F_review"].values)
bow_sparse = bow_vect.transform(X_train["F_review"].values)
X_bow = bow_sparse
y_bow = y_train
roc = []
accuracy = []
f1 = []
k_value = []
for i in range(1,50,2):
BNB =BernoulliNB(alpha =i)
print("************* for alpha = ",i,"*************")
x = (cross_validate(BNB, X_bow,y_bow, scoring = ['accuracy','f1','roc_auc'], return_train_score = False, cv = 10))
print(x["test_roc_auc"].mean())
print("-----c------break------c-------break-------c-----------")
roc.append(x['test_roc_auc'].mean())#This is the ROC metric
accuracy.append(x['test_accuracy'].mean())#This is the accuracy metric
f1.append(x['test_f1'].mean())#This is the F1 score
k_value.append(i)
#BOW Test prediction
BNB =BernoulliNB(alpha= 1)
BNB.fit(X_bow, y_bow)
y_pred = BNB.predict(bow_vect.transform(X_test["F_review"]))
print("Accuracy Score: ",accuracy_score(y_test,y_pred))
print("ROC: ", roc_auc_score(y_test,y_pred))
print("Confusion Matrix: ", confusion_matrix(y_test,y_pred))