Так вы будете загружать изображения с метаданными в s3, каждое изображение должно содержать только одно лицо с одним именем, указанным в качестве метаданных
import boto3
s3 = boto3.resource('s3')
# Get list of objects for indexing
images=[('image01.jpeg','Albert Einstein'),
('image02.jpeg','Candy'),
('image03.jpeg','Armstrong'),
('image04.jpeg','Ram'),
('image05.jpeg','Peter'),
('image06.jpeg','Shashank')
]
# Iterate through list to upload objects to S3
for image in images:
file = open(image[0],'rb')
object = s3.Object('rekognition-pictures','index/'+ image[0])
ret = object.put(Body=file,
Metadata={'FullName':image[1]}
)
Теперь вам нужно выполнить индексацию с помощью лямбда-функции, которая выполнит вашу работу и сохранит лица в вашей коллекции rekognition, а также сохранит имя для каждого лица в таблице DynamodB, на которые вы можете ссылаться позже при использовании других API-интерфейсов, таких как как сравнивать лица
from __future__ import print_function
import boto3
from decimal import Decimal
import json
import urllib
print('Loading function')
dynamodb = boto3.client('dynamodb')
s3 = boto3.client('s3')
rekognition = boto3.client('rekognition')
# --------------- Helper Functions ------------------
def index_faces(bucket, key):
response = rekognition.index_faces(
Image={"S3Object":
{"Bucket": bucket,
"Name": key}},
CollectionId="family_collection")
return response
def update_index(tableName,faceId, fullName):
response = dynamodb.put_item(
TableName=tableName,
Item={
'RekognitionId': {'S': faceId},
'FullName': {'S': fullName}
}
)
# --------------- Main handler ------------------
def lambda_handler(event, context):
# Get the object from the event
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(
event['Records'][0]['s3']['object']['key'].encode('utf8'))
try:
# Calls Amazon Rekognition IndexFaces API to detect faces in S3 object
# to index faces into specified collection
response = index_faces(bucket, key)
# Commit faceId and full name object metadata to DynamoDB
if response['ResponseMetadata']['HTTPStatusCode'] == 200:
faceId = response['FaceRecords'][0]['Face']['FaceId']
ret = s3.head_object(Bucket=bucket,Key=key)
personFullName = ret['Metadata']['fullname']
update_index('family_collection',faceId,personFullName)
# Print response to console
print(response)
return response
except Exception as e:
print(e)
print("Error processing object {} from bucket {}. ".format(key, bucket))
raise e