Заполните пропущенные недели в указанном интервале дат в Spark (Scala) - PullRequest
0 голосов
/ 11 января 2019

Рассмотрим следующий фрейм данных:

val df = Seq("20140101", "20170619")
  .toDF("date")
  .withColumn("date", to_date($"date", "yyyyMMdd"))
  .withColumn("week", date_format($"date", "Y-ww"))

Код дает:

date: date
week: string

date        week
2014-01-01  2014-01
2017-06-19  2017-25

То, что я хотел бы сделать, это сгущать фрейм данных, поэтому у меня остается по одной строке на каждую неделю в интервале от 2014-01 до 2017-25. Столбец date не важен, поэтому его можно удалить.

Это необходимо сделать с помощью множества комбинаций идентификаторов клиент / продукт, поэтому я ищу эффективное решение, желательно не использующее ничего, кроме java.sql.date и встроенных функций даты в Spark.

1 Ответ

0 голосов
/ 13 января 2019

Проверьте это. Я использовал «воскресенье» по умолчанию в качестве номера начала недели.

scala> import java.time._
import java.time._

scala> import java.time.format._
import java.time.format._

scala> val a = java.sql.Date.valueOf("2014-01-01")
a: java.sql.Date = 2014-01-01

scala> val b = java.sql.Date.valueOf("2017-12-31")
b: java.sql.Date = 2017-12-31

scala> val a1 = a.toLocalDate.toEpochDay.toInt
a1: Int = 16071

scala> val b1 = b.toLocalDate.toEpochDay.toInt
b1: Int = 17531

scala> val c1 = (a1 until b1).map(LocalDate.ofEpochDay(_)).map(x => (x,x.format(DateTimeFormatter.ofPattern("Y-ww")),x.format(DateTimeFormatter.ofPattern("E")) ) ).filter( x=> x._3 =="Sun" ).map(x => (java.sql.Date.valueOf(x._1),x._2) ).toMap
c1: scala.collection.immutable.Map[java.sql.Date,String] = Map(2014-06-01 -> 2014-23, 2014-11-02 -> 2014-45, 2017-11-05 -> 2017-45, 2016-10-23 -> 2016-44, 2014-11-16 -> 2014-47, 2014-12-28 -> 2015-01, 2017-04-30 -> 2017-18, 2015-01-04 -> 2015-02, 2015-10-11 -> 2015-42, 2014-09-07 -> 2014-37, 2017-09-17 -> 2017-38, 2014-04-13 -> 2014-16, 2014-10-19 -> 2014-43, 2014-01-05 -> 2014-02, 2016-07-17 -> 2016-30, 2015-07-26 -> 2015-31, 2016-09-18 -> 2016-39, 2015-11-22 -> 2015-48, 2015-10-04 -> 2015-41, 2015-11-15 -> 2015-47, 2015-01-11 -> 2015-03, 2016-12-11 -> 2016-51, 2017-02-05 -> 2017-06, 2016-03-27 -> 2016-14, 2015-11-01 -> 2015-45, 2017-07-16 -> 2017-29, 2015-05-24 -> 2015-22, 2017-06-18 -> 2017-25, 2016-03-13 -> 2016-12, 2014-11-09 -> 2014-46, 2014-09-21 -> 2014-39, 2014-01-26 -> 2014-05...

scala> val df = Seq( (c1) ).toDF("a")
df: org.apache.spark.sql.DataFrame = [a: map<date,string>]


scala> val df2 = df.select(explode('a).as(Seq("dt","wk")) )
df2: org.apache.spark.sql.DataFrame = [dt: date, wk: string]

scala> df2.orderBy('dt).show(false)
+----------+-------+
|dt        |wk     |
+----------+-------+
|2014-01-05|2014-02|
|2014-01-12|2014-03|
|2014-01-19|2014-04|
|2014-01-26|2014-05|
|2014-02-02|2014-06|
|2014-02-09|2014-07|
|2014-02-16|2014-08|
|2014-02-23|2014-09|
|2014-03-02|2014-10|
|2014-03-09|2014-11|
|2014-03-16|2014-12|
|2014-03-23|2014-13|
|2014-03-30|2014-14|
|2014-04-06|2014-15|
|2014-04-13|2014-16|
|2014-04-20|2014-17|
|2014-04-27|2014-18|
|2014-05-04|2014-19|
|2014-05-11|2014-20|
|2014-05-18|2014-21|
+----------+-------+
only showing top 20 rows


scala>
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...