Исключение из-за нехватки памяти при запуске кода Python Deep Learning - PullRequest
0 голосов
/ 03 сентября 2018

Я пытаюсь запустить Супер Разрешение Deep Image Prior. При запуске я получаю эту ошибку. Может кто-нибудь сказать мне, где я иду не так? Я использую CUDA-9.2, GPU 12 ГБ, которых достаточно для запуска этого кода. Кто-то сказал мне, чтобы уменьшить размер партии, и я не знаю, как это сделать. Я новичок в этом.

from __future__ import print_function
import matplotlib.pyplot as plt
%matplotlib inline

import argparse
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import numpy as np
from models import *

import torch
import torch.optim

from skimage.measure import compare_psnr
from models.downsampler import Downsampler

from utils.sr_utils import *

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark =True
dtype = torch.cuda.FloatTensor

imsize = -1 
factor = 4 # 8
enforse_div32 = 'CROP' # we usually need the dimensions to be divisible by a power of two (32 in this case)
PLOT = True

# To produce images from the paper we took *_GT.png images from LapSRN viewer for corresponding factor,
# e.g. x4/zebra_GT.png for factor=4, and x8/zebra_GT.png for factor=8 
path_to_image = '/home/smitha/Documents/Falcon.png'
imgs = load_LR_HR_imgs_sr(path_to_image , imsize, factor, enforse_div32)

imgs['bicubic_np'], imgs['sharp_np'], imgs['nearest_np'] = get_baselines(imgs['LR_pil'], imgs['HR_pil'])

if PLOT:
    plot_image_grid([imgs['HR_np'], imgs['bicubic_np'], imgs['sharp_np'], imgs['nearest_np']], 4,12);
    print ('PSNR bicubic: %.4f   PSNR nearest: %.4f' %  (
                                        compare_psnr(imgs['HR_np'], imgs['bicubic_np']), 
                                        compare_psnr(imgs['HR_np'], imgs['nearest_np'])))
input_depth = 32

INPUT =     'noise'
pad   =     'reflection'
OPT_OVER =  'net'
KERNEL_TYPE='lanczos2'

LR = 0.01
tv_weight = 0.0

OPTIMIZER = 'adam'

if factor == 4: 
    num_iter = 2000
    reg_noise_std = 0.03
elif factor == 8:
    num_iter = 4000
    reg_noise_std = 0.05
else:
    assert False, 'We did not experiment with other factors'
net_input = get_noise(input_depth, INPUT, (imgs['HR_pil'].size[1], imgs['HR_pil'].size[0])).type(dtype).detach()

NET_TYPE = 'skip' # UNet, ResNet
net = get_net(input_depth, 'skip', pad,
              skip_n33d=128, 
              skip_n33u=128, 
              skip_n11=4, 
              num_scales=5,
              upsample_mode='bilinear').type(dtype)

# Losses
mse = torch.nn.MSELoss().type(dtype)

img_LR_var = np_to_torch(imgs['LR_np']).type(dtype)

downsampler = Downsampler(n_planes=3, factor=factor, kernel_type=KERNEL_TYPE, phase=0.5, preserve_size=True).type(dtype)
def closure():
    global i, net_input

    if reg_noise_std > 0:
        net_input = net_input_saved + (noise.normal_() * reg_noise_std)

    out_HR = net(net_input)
    out_LR = downsampler(out_HR)

    total_loss = mse(out_LR, img_LR_var) 

    if tv_weight > 0:
        total_loss += tv_weight * tv_loss(out_HR)

    total_loss.backward()

    # Log
    psnr_LR = compare_psnr(imgs['LR_np'], torch_to_np(out_LR))
    psnr_HR = compare_psnr(imgs['HR_np'], torch_to_np(out_HR))
    print ('Iteration %05d    PSNR_LR %.3f   PSNR_HR %.3f' % (i, psnr_LR, psnr_HR), '\r', end='')

    # History
    psnr_history.append([psnr_LR, psnr_HR])

    if PLOT and i % 100 == 0:
        out_HR_np = torch_to_np(out_HR)
        plot_image_grid([imgs['HR_np'], imgs['bicubic_np'], np.clip(out_HR_np, 0, 1)], factor=13, nrow=3)

    i += 1

    return total_loss
psnr_history = [] 
net_input_saved = net_input.detach().clone()
noise = net_input.detach().clone()

i = 0
p = get_params(OPT_OVER, net, net_input)
optimize(OPTIMIZER, p, closure, LR, num_iter)
out_HR_np = np.clip(torch_to_np(net(net_input)), 0, 1)
result_deep_prior = put_in_center(out_HR_np, imgs['orig_np'].shape[1:])

# For the paper we acually took `_bicubic.png` files from LapSRN viewer and used `result_deep_prior` as our result
plot_image_grid([imgs['HR_np'],
                 imgs['bicubic_np'],
                 out_HR_np], factor=4, nrow=1);

Ошибка:

Starting optimization with ADAM

/home/smitha/anaconda3/lib/python3.6/site-packages/torch/nn/modules/upsampling.py:122: UserWarning: nn.Upsampling is deprecated. Use nn.functional.interpolate instead.
  warnings.warn("nn.Upsampling is deprecated. Use nn.functional.interpolate instead.")
/home/smitha/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py:1961: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
  "See the documentation of nn.Upsample for details.".format(mode))

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-6-0fe781a02812> in <module>()
      5 i = 0
      6 p = get_params(OPT_OVER, net, net_input)
----> 7 optimize(OPTIMIZER, p, closure, LR, num_iter)

~/Documents/deep-image-prior/utils/common_utils.py in optimize(optimizer_type, parameters, closure, LR, num_iter)
    227         for j in range(num_iter):
    228             optimizer.zero_grad()
--> 229             closure()
    230             optimizer.step()
    231     else:

<ipython-input-5-887ba7755977> in closure()
      5         net_input = net_input_saved + (noise.normal_() * reg_noise_std)
      6 
----> 7     out_HR = net(net_input)
      8     out_LR = downsampler(out_HR)
      9 

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    475             result = self._slow_forward(*input, **kwargs)
    476         else:
--> 477             result = self.forward(*input, **kwargs)
    478         for hook in self._forward_hooks.values():
    479             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/container.py in forward(self, input)
     89     def forward(self, input):
     90         for module in self._modules.values():
---> 91             input = module(input)
     92         return input
     93 

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    475             result = self._slow_forward(*input, **kwargs)
    476         else:
--> 477             result = self.forward(*input, **kwargs)
    478         for hook in self._forward_hooks.values():
    479             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/container.py in forward(self, input)
     89     def forward(self, input):
     90         for module in self._modules.values():
---> 91             input = module(input)
     92         return input
     93 

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    475             result = self._slow_forward(*input, **kwargs)
    476         else:
--> 477             result = self.forward(*input, **kwargs)
    478         for hook in self._forward_hooks.values():
    479             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/conv.py in forward(self, input)
    299     def forward(self, input):
    300         return F.conv2d(input, self.weight, self.bias, self.stride,
--> 301                         self.padding, self.dilation, self.groups)
    302 
    303 

RuntimeError: CUDA error: out of memory

Если я уменьшу размер входного изображения, я получу эту ошибку.

RuntimeError                              Traceback (most recent call last)
<ipython-input-6-0fe781a02812> in <module>()
      5 i = 0
      6 p = get_params(OPT_OVER, net, net_input)
----> 7 optimize(OPTIMIZER, p, closure, LR, num_iter)

~/Documents/deep-image-prior/utils/common_utils.py in optimize(optimizer_type, parameters, closure, LR, num_iter)
    227         for j in range(num_iter):
    228             optimizer.zero_grad()
--> 229             closure()
    230             optimizer.step()
    231     else:

<ipython-input-5-887ba7755977> in closure()
      8     out_LR = downsampler(out_HR)
      9 
---> 10     total_loss = mse(out_LR, img_LR_var)
     11 
     12     if tv_weight > 0:

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    475             result = self._slow_forward(*input, **kwargs)
    476         else:
--> 477             result = self.forward(*input, **kwargs)
    478         for hook in self._forward_hooks.values():
    479             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/loss.py in forward(self, input, target)
    419 
    420     def forward(self, input, target):
--> 421         return F.mse_loss(input, target, reduction=self.reduction)
    422 
    423 

~/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py in mse_loss(input, target, size_average, reduce, reduction)
   1714     else:
   1715         reduction = _Reduction.get_enum(reduction)
-> 1716     return _pointwise_loss(lambda a, b: (a - b) ** 2, torch._C._nn.mse_loss, input, target, reduction)
   1717 
   1718 

~/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py in _pointwise_loss(lambd, lambd_optimized, input, target, reduction)
   1672         return torch.mean(d) if reduction == 'elementwise_mean' else torch.sum(d)
   1673     else:
-> 1674         return lambd_optimized(input, target, reduction)
   1675 
   1676 

RuntimeError: input and target shapes do not match: input [1 x 3 x 64 x 64], target [1 x 1 x 64 x 64] at /opt/conda/conda-bld/pytorch_1532502421238/work/aten/src/THCUNN/generic/MSECriterion.cu:12
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...