Почему groupby.diff такой медленный? - PullRequest
0 голосов
/ 05 ноября 2018

Я хочу вычислить diff серии для каждой группы, что-то вроде следующего примера:

In [24]: rnd_ser = pd.Series(np.random.randn(5000))
    ...: com_ser = pd.concat([rnd_ser] * 500, keys=np.arange(500), names=['Date', 'ID'])

In [25]: d1 = com_ser.groupby("Date").diff()

In [26]: d2 = com_ser - com_ser.groupby("Date").shift()

In [27]: np.allclose(d1.fillna(0), d2.fillna(0))
Out[27]: True

Существует два способа решения этой проблемы, однако первый имеет плохую производительность:

In [30]: %timeit d1 = com_ser.groupby("Date").diff()
616 ms ± 5.62 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [31]: %timeit d2 = com_ser - com_ser.groupby("Date").shift()
95 ms ± 326 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Это ожидаемый или ошибка?

Подробности моего env:

In [23]: pd.show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 3.7.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.23.4
pytest: 3.9.3
pip: 18.1
setuptools: 40.5.0
Cython: 0.29
numpy: 1.15.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.1.1
sphinx: 1.8.1
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.1
openpyxl: 2.5.9
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.12
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

1 Ответ

0 голосов
/ 05 ноября 2018

FWIW, я вижу похожие цифры на моей машине

%timeit d1 = com_ser.groupby("Date").diff()
523 ms ± 32.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit d2 = com_ser - com_ser.groupby("Date").shift()
80.8 ms ± 2.31 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Реализация Pandas diff() кажется медленной с groupby()

Например, если я сделаю одну большую серию

big_ser = pd.Series(np.random.randn(int(1e7)))

затем сравните сдвиг и вычтите с Series.diff()

%timeit big_ser - big_ser.shift()
46.3 ms ± 789 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit big_ser.diff()
41.6 ms ± 488 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Тогда времена между реализациями идентичны. Это следует, когда вы посмотрите внутренний исходный код для Series.diff, который явно указан в комментариях

def diff(arr, n, axis=0):
    """
    difference of n between self,
    analogous to s-s.shift(n)

Так что я думаю, что это должно быть немного в groupby, специфичном для diff()

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...