Если вы хотите сделать это вручную и понять, что происходит:
Первые минусы по столбцам, чтобы в каждом столбце было минимум 0.
Затем разделите амплитуду по столбцам (max - min), чтобы у каждого столбца было максимум 1.
Теперь каждый столбец находится между 0 и 1. Если вы хотите, чтобы он был между -1 и 1, умножьте на 2 и вычтите 1:
In [3]: mins = np.min(matrix, axis=0)
In [4]: maxs = np.max(matrix, axis=0)
In [5]: (matrix - mins[None, :]) / (maxs[None, :] - mins[None, :])
Out[5]:
array([[ 0. , 0. , 0. , 0.17857143, 0. ],
[ 0.25 , 0.25 , 0.02 , 0. , 0. ],
[ 0.5 , 0.5 , 0.16 , 0.16666667, 0. ],
[ 0.75 , 0.75 , 0.22 , 0.32142857, 0. ],
[ 1. , 1. , 1. , 1. , 1. ]])
In [6]: 2 * _ - 1
Out[6]:
array([[-1. , -1. , -1. , -0.64285714, -1. ],
[-0.5 , -0.5 , -0.96 , -1. , -1. ],
[ 0. , 0. , -0.68 , -0.66666667, -1. ],
[ 0.5 , 0.5 , -0.56 , -0.35714286, -1. ],
[ 1. , 1. , 1. , 1. , 1. ]])
Я использую [None, :]
для numpy, чтобы понять, что я говорю о «векторах строк», а не столбцах.
В противном случае используйте замечательный пакет sklearn
, в модуле которого preprocessing
есть много полезных преобразователей:
In [13]: from sklearn.preprocessing import MinMaxScaler
In [14]: scaler = MinMaxScaler(feature_range=(-1, 1))
In [15]: scaler.fit(matrix)
Out[15]: MinMaxScaler(copy=True, feature_range=(-1, 1))
In [16]: scaler.transform(matrix)
Out[16]:
array([[-1. , -1. , -1. , -0.64285714, -1. ],
[-0.5 , -0.5 , -0.96 , -1. , -1. ],
[ 0. , 0. , -0.68 , -0.66666667, -1. ],
[ 0.5 , 0.5 , -0.56 , -0.35714286, -1. ],
[ 1. , 1. , 1. , 1. , 1. ]])