У меня есть фрейм данных с подробной информацией о событии, я пытаюсь получить топ-5 недавно зарегистрированных событий по дате и идентификатору пользователя. Вот код, который я пробовал до сих пор.
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val df = sc.parallelize(Seq( ("20180515114049", "user001","e001","cross-over","some data related to even"),
("20180515114049", "user004","e002","cross-limit","some data related to event"),
("20180515114049", "user001","e001","cross-over","some data related to event"),
("20180615114049", "user001","e001","cross-over","some data related to event"),
("20180715114049", "user003","e004","cross-cl","some data related to event"),
("20180715114049", "user005","e001","cross-over","some data related to event"),
("20180715114049", "user005","e002","cross-limit","some data related to event"),
("20180715114049", "user005","e003","no-cross","some data related to event"),
("20180715114049", "user005","e004","cross-over","some data related to event"),
("20180715114049", "user005","e005","dl-over","some data related to event"),
("20180715114049", "user005","e003","no-cross","some data related to event"),
("20180815114049", "user006","e001","cross-over","some data related to event"),
("20180915114049", "user001","e001","cross-over","some data related to event"),
("20180105114049", "user001","e006","straight","some data related to event")
)).toDF("eventtime", "userid","eventid","event_title","eventdata")
df.show()
+--------------+-------+-------+-----------+--------------------+
| eventtime| userid|eventid|event_title| eventdata|
+--------------+-------+-------+-----------+--------------------+
|20180515114049|user001| e001| cross-over|some data related...|
|20180515114049|user004| e002|cross-limit|some data related...|
|20180515114049|user001| e001| cross-over|some data related...|
|20180615114049|user001| e001| cross-over|some data related...|
|20180715114049|user003| e004| cross-cl|some data related...|
|20180715114049|user005| e001| cross-over|some data related...|
|20180715114049|user005| e002|cross-limit|some data related...|
|20180715114049|user005| e003| no-cross|some data related...|
|20180715114049|user005| e004| cross-over|some data related...|
|20180715114049|user005| e005| dl-over|some data related...|
|20180715114049|user005| e003| no-cross|some data related...|
|20180815114049|user006| e001| cross-over|some data related...|
|20180915114049|user001| e001| cross-over|some data related...|
|20180105114049|user001| e006| straight|some data related...|
+--------------+-------+-------+-----------+--------------------+
val df2= df.groupBy($"userid",$"eventid").agg(last($"eventtime") as "lasteventtime")
df2.show(false)
+-------+-------+--------------+
|userid |eventid|lasteventtime |
+-------+-------+--------------+
|user005|e004 |20180715114049|
|user005|e001 |20180715114049|
|user001|e006 |20180105114049|
|user001|e001 |20180915114049|
|user005|e002 |20180715114049|
|user006|e001 |20180815114049|
|user004|e002 |20180515114049|
|user005|e005 |20180715114049|
|user005|e003 |20180715114049|
|user003|e004 |20180715114049|
+-------+-------+--------------+
...
вот часть, с которой я борюсь, как соединить, объединить последнюю группу, о которой сообщают, чтобы ранжировать и получить лучшие 5 из последней сообщенной группы.
...
val w = Window.partitionBy($"userid",$"event_title",$"eventid").orderBy($"eventtime".desc)
val contentByRank = df.withColumn("rank", dense_rank().over(w)).filter($"rank" <= 5)
contentByRank.show(20,false)
Также, как получить 5 лучших отфильтрованных рангов, в этом случае у нас может быть несколько событий с одинаковым рангом.
+--------------+-------+-------+-----------+--------------------------+----+
|eventtime |userid |eventid|event_title|eventdata |rank|
+--------------+-------+-------+-----------+--------------------------+----+
|20180515114049|user004|e002 |cross-limit|some data related to event|1 |
|20180715114049|user005|e004 |cross-over |some data related to event|1 |
|20180815114049|user006|e001 |cross-over |some data related to event|1 |
|20180715114049|user005|e003 |no-cross |some data related to event|1 |
|20180715114049|user005|e003 |no-cross |some data related to event|1 |
|20180715114049|user005|e005 |dl-over |some data related to event|1 |
|20180715114049|user003|e004 |cross-cl |some data related to event|1 |
|20180715114049|user005|e001 |cross-over |some data related to event|1 |
|20180105114049|user001|e006 |straight |some data related to event|1 |
|20180715114049|user005|e002 |cross-limit|some data related to event|1 |
|20180915114049|user001|e001 |cross-over |some data related to event|1 |
|20180615114049|user001|e001 |cross-over |some data related to event|2 |
|20180515114049|user001|e001 |cross-over |some data related to even |3 |
|20180515114049|user001|e001 |cross-over |some data related to event|3 |
+--------------+-------+-------+-----------+--------------------------+----+