Лучшая реализация, которую я нашел, здесь
https://github.com/pytorch/benchmark/blob/master/benchmarks/lstm_variants/lstm.py
Он даже реализует четыре различных варианта повторяющихся выпадений, что очень полезно!
Если вы заберете выпавшие части, вы получите
import math
import torch as th
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.i2h = nn.Linear(input_size, 4 * hidden_size, bias=bias)
self.h2h = nn.Linear(hidden_size, 4 * hidden_size, bias=bias)
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.hidden_size)
for w in self.parameters():
w.data.uniform_(-std, std)
def forward(self, x, hidden):
h, c = hidden
h = h.view(h.size(1), -1)
c = c.view(c.size(1), -1)
x = x.view(x.size(1), -1)
# Linear mappings
preact = self.i2h(x) + self.h2h(h)
# activations
gates = preact[:, :3 * self.hidden_size].sigmoid()
g_t = preact[:, 3 * self.hidden_size:].tanh()
i_t = gates[:, :self.hidden_size]
f_t = gates[:, self.hidden_size:2 * self.hidden_size]
o_t = gates[:, -self.hidden_size:]
c_t = th.mul(c, f_t) + th.mul(i_t, g_t)
h_t = th.mul(o_t, c_t.tanh())
h_t = h_t.view(1, h_t.size(0), -1)
c_t = c_t.view(1, c_t.size(0), -1)
return h_t, (h_t, c_t)
PS: Хранилище содержит еще много вариантов LSTM и других RNN:
https://github.com/pytorch/benchmark/tree/master/benchmarks.
Проверьте это, возможно, расширение, которое вы имели в виду, уже существует!
EDIT:
Как упоминалось в комментариях, вы можете обернуть ячейку LSTM выше для обработки последовательного вывода:
import math
import torch as th
import torch.nn as nn
class LSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
# As before
def reset_parameters(self):
# As before
def forward(self, x, hidden):
if hidden is None:
hidden = self._init_hidden(x)
# Rest as before
@staticmethod
def _init_hidden(input_):
h = th.zeros_like(input_.view(1, input_.size(1), -1))
c = th.zeros_like(input_.view(1, input_.size(1), -1))
return h, c
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
super().__init__()
self.lstm_cell = LSTMCell(input_size, hidden_size, bias)
def forward(self, input_, hidden=None):
# input_ is of dimensionalty (1, time, input_size, ...)
outputs = []
for x in torch.unbind(input_, dim=1):
hidden = self.lstm_cell(x, hidden)
outputs.append(hidden[0].clone())
return torch.stack(outputs, dim=1)
Я не тестировал код, так как работаю с реализацией convLSTM. Пожалуйста, дайте мне знать, если что-то не так.