Я сейчас работаю с "Иерархической кластеризацией по основным компонентам (HCPC)". В конце анализа p-значения вычисляются функцией HCPC.
Я искал, но не смог найти функцию, которая могла бы регулировать значение p на основе FDR вместе с HCPC. Очень важно избегать ненужных данных в моем многомерном наборе. Поэтому мой вопрос состоит в том, как я могу запустить вместе с HCPC настройку p-значения?
Вот что я сейчас делаю:
#install.packages(c("FactoMineR", "factoextra", "missMDA"))
library(ggplot2)
library(factoextra)
library(FactoMineR)
library(missMDA)
library(data.table)
MyData <- fread('https://drive.google.com/open?
id=1y1YbIXtUssEBqmMSEbiQGcoV5j2Bz31k')
row.names(MyData) <- MyData$ID
MyData [1] <- NULL
Mydata_frame <- data.frame(MyData)
# Compute PCA with ncp = 3 (Variate based on the cluster number)
Mydata_frame.pca <- PCA(Mydata_frame, ncp = 2, graph = FALSE)
# Compute hierarchical clustering on principal components
Mydata.hcpc <- HCPC(Mydata_frame.pca, graph = FALSE)
Mydata.hcpc$desc.var$quanti
v.test Mean in category
Overall mean sd in category Overall sd p.value
CD8RAnegDRpos 12.965378 -0.059993483
-0.3760962775 0.46726224 0.53192037 1.922798e-38
TregRAnegDRpos 12.892725 0.489753272
0.1381306362 0.46877083 0.59502553 4.946490e-38
mTregCCR6pos197neg195neg 12.829277 1.107851623
0.6495813704 0.48972987 0.77933283 1.124088e-37
CD8posCCR6neg183neg194neg 12.667318 1.741757598
1.1735140264 0.45260338 0.97870842 8.972977e-37
mTregCCR6neg197neg195neg 12.109074 1.044905184
0.6408258230 0.51417779 0.72804665 9.455537e-34
CD8CD8posCD4neg 11.306215 0.724115486
0.4320918842 0.49823677 0.56351333 1.222504e-29
CD8posCCR6pos183pos194neg 11.226390 -0.239967805
-0.4982954123 0.49454619 0.50203520 3.025904e-29
TconvRAnegDRpos 11.011114 -0.296585038
-0.5279707475 0.44863446 0.45846770 3.378002e-28