Я пытаюсь написать небольшой классификатор для классификации мужских и женских имен и постоянно получаю сообщение об ошибке «объект dict не вызывается». Я заменил dict () на my_dict (), чтобы увидеть, произошло ли это из-за зарезервированных слов, но затем ошибка становится «my_dict () не определен». Пожалуйста, помогите.
Мой код:
import nltk, random
class GenderApp(object):
def __init__(self):
names_sample = nltk.corpus.names
self.names = [(name.lower(), 'male') for name in names_sample.words('male.txt')] + [(name.lower(), 'female') for name in names_sample.words('female.txt')]
random.shuffle(self.names)
self.feature_sets = [(GenderApp.gender_features_part2(name), gender) for name, gender in self.names]
self.train_set = self.feature_sets[:4000]
self.test_set = self.feature_sets[4000:]
self.classifier = nltk.NaiveBayesClassifier.train(self.train_set)
@staticmethod
def gender_features_part2(word):
name = word.lower() # let's normalise our input
features = dict()
features['first_letter'] = name[0]
features['last_letter'] = name[1]
for letter in 'abcdefghijklmnopqrstuvwxyz':
features['count' + letter] = name.count(letter)
features['has' + letter] = letter in name
return features
def check_gender(self, name):
name = name.lower()
print('Gender for ' + name + ' : ' + self.classifier.classify(GenderApp.gender_features_part2(name)))
def check_accuracy_of_the_classifier(self):
print('Accuracy of classifier is : ', nltk.classify.accuracy(self.classifier, self.test_set) * 100)
def see_learned_information_of_classifier(self, n=10):
self.classifier.show_most_informative_features(n)
if __name__ == '__main__':
app = GenderApp()
app.check_gender('Neo')
app.see_learned_information_of_classifier(20)
app.check_accuracy_of_the_classifier()
Ошибка:
<ipython-input-143-050ff81df34d> in <listcomp>(.0)
8 for name in names_sample.words('female.txt')]
9 random.shuffle(self.names)
---> 10 self.feature_sets = [(GenderApp.gender_features_part2(name), gender) for name, gender in self.names]
11 self.train_set = self.feature_sets[:4000]
12 self.test_set = self.feature_sets[4000:]
<ipython-input-143-050ff81df34d> in gender_features_part2(word)
16 def gender_features_part2(word):
17 name = word.lower() # let's normalise our input
---> 18 features = dict()
19 features['first_letter'] = name[0]
20 features['last_letter'] = name[1]
TypeError: 'dict' object is not callable