FileNotFoundException (stderr & stdout) при отправке JAR в Spark в среде EMR - PullRequest
0 голосов
/ 06 ноября 2018

Я изучаю курс «Удар Apache с помощью Scala - Практические занятия с большими данными» в Udemy.
В одной из лекций вы должны настроить среду EMR и отправить файл JAR в кластер.
При отправке кода я получаю следующую ошибку.
Редактировать: код действительно работает после ошибки.

[hadoop@ip-172-31-27-160 ~]$ spark-submit MovieSimilarities1M-assembly-1.0.jar 250
log4j:ERROR setFile(null,true) call failed.
java.io.FileNotFoundException: /stderr (Permission denied)
    at java.io.FileOutputStream.open0(Native Method)
    at java.io.FileOutputStream.open(FileOutputStream.java:270)
    at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
    at java.io.FileOutputStream.<init>(FileOutputStream.java:133)
    at org.apache.log4j.FileAppender.setFile(FileAppender.java:294)
    at org.apache.log4j.FileAppender.activateOptions(FileAppender.java:165)
    at org.apache.log4j.DailyRollingFileAppender.activateOptions(DailyRollingFileAppender.java:223)
    at org.apache.log4j.config.PropertySetter.activate(PropertySetter.java:307)
    at org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:172)
    at org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:104)
    at org.apache.log4j.PropertyConfigurator.parseAppender(PropertyConfigurator.java:842)
    at org.apache.log4j.PropertyConfigurator.parseCategory(PropertyConfigurator.java:768)
    at org.apache.log4j.PropertyConfigurator.parseCatsAndRenderers(PropertyConfigurator.java:672)
    at org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:516)
    at org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:580)
    at org.apache.log4j.helpers.OptionConverter.selectAndConfigure(OptionConverter.java:526)
    at org.apache.log4j.LogManager.<clinit>(LogManager.java:127)
    at org.apache.spark.internal.Logging$class.initializeLogging(Logging.scala:120)
    at org.apache.spark.internal.Logging$class.initializeLogIfNecessary(Logging.scala:108)
    at org.apache.spark.deploy.SparkSubmit$.initializeLogIfNecessary(SparkSubmit.scala:71)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:128)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
log4j:ERROR Either File or DatePattern options are not set for appender [DRFA-stderr].
log4j:ERROR setFile(null,true) call failed.
java.io.FileNotFoundException: /stdout (Permission denied)
    at java.io.FileOutputStream.open0(Native Method)
    at java.io.FileOutputStream.open(FileOutputStream.java:270)
    at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
    at java.io.FileOutputStream.<init>(FileOutputStream.java:133)
    at org.apache.log4j.FileAppender.setFile(FileAppender.java:294)
    at org.apache.log4j.FileAppender.activateOptions(FileAppender.java:165)
    at org.apache.log4j.DailyRollingFileAppender.activateOptions(DailyRollingFileAppender.java:223)
    at org.apache.log4j.config.PropertySetter.activate(PropertySetter.java:307)
    at org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:172)
    at org.apache.log4j.config.PropertySetter.setProperties(PropertySetter.java:104)
    at org.apache.log4j.PropertyConfigurator.parseAppender(PropertyConfigurator.java:842)
    at org.apache.log4j.PropertyConfigurator.parseCategory(PropertyConfigurator.java:768)
    at org.apache.log4j.PropertyConfigurator.parseCatsAndRenderers(PropertyConfigurator.java:672)
    at org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:516)
    at org.apache.log4j.PropertyConfigurator.doConfigure(PropertyConfigurator.java:580)
    at org.apache.log4j.helpers.OptionConverter.selectAndConfigure(OptionConverter.java:526)
    at org.apache.log4j.LogManager.<clinit>(LogManager.java:127)
    at org.apache.spark.internal.Logging$class.initializeLogging(Logging.scala:120)
    at org.apache.spark.internal.Logging$class.initializeLogIfNecessary(Logging.scala:108)
    at org.apache.spark.deploy.SparkSubmit$.initializeLogIfNecessary(SparkSubmit.scala:71)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:128)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
log4j:ERROR Either File or DatePattern options are not set for appender [DRFA-stdout].

Код spark-submit работает, когда я запускаю его локально, и отображается только в среде EMR.
Что может вызвать эту ошибку? Может ли это быть что-то с разрешениями пользователя hadoop в среде?

Объект MovieShapsities выглядит следующим образом:

package com.sundogsoftware.spark

import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.log4j._
import scala.io.Source
import java.nio.charset.CodingErrorAction
import scala.io.Codec
import scala.math.sqrt


// To run on EMR successfully + output results for Star Wars:
// aws s3 cp s3://sundog-spark/MovieSimilarities1M.jar ./
// aws s3 cp s3://sundog-spark/ml-1m/movies.dat ./
// spark-submit --executor-memory 1g MovieSimilarities1M.jar 260


object MovieSimilarities1M {

  /** Load up a Map of movie IDs to movie names. */
  def loadMovieNames() : Map[Int, String] = {

    // Handle character encoding issues:
    implicit val codec = Codec("UTF-8")
    codec.onMalformedInput(CodingErrorAction.REPLACE)
    codec.onUnmappableCharacter(CodingErrorAction.REPLACE)

    // Create a Map of Ints to Strings, and populate it from u.item.
    var movieNames:Map[Int, String] = Map()

     val lines = Source.fromFile("movies.dat").getLines()
     for (line <- lines) {
       var fields = line.split("::")
       if (fields.length > 1) {
        movieNames += (fields(0).toInt -> fields(1))
       }
     }

     return movieNames
  }

  type MovieRating = (Int, Double)
  type UserRatingPair = (Int, (MovieRating, MovieRating))
  def makePairs(userRatings:UserRatingPair) = {
    val movieRating1 = userRatings._2._1
    val movieRating2 = userRatings._2._2

    val movie1 = movieRating1._1
    val rating1 = movieRating1._2
    val movie2 = movieRating2._1
    val rating2 = movieRating2._2

    ((movie1, movie2), (rating1, rating2))
  }

  def filterDuplicates(userRatings:UserRatingPair):Boolean = {
    val movieRating1 = userRatings._2._1
    val movieRating2 = userRatings._2._2

    val movie1 = movieRating1._1
    val movie2 = movieRating2._1

    return movie1 < movie2
  }

  type RatingPair = (Double, Double)
  type RatingPairs = Iterable[RatingPair]

  def computeCosineSimilarity(ratingPairs:RatingPairs): (Double, Int) = {
    var numPairs:Int = 0
    var sum_xx:Double = 0.0
    var sum_yy:Double = 0.0
    var sum_xy:Double = 0.0

    for (pair <- ratingPairs) {
      val ratingX = pair._1
      val ratingY = pair._2

      sum_xx += ratingX * ratingX
      sum_yy += ratingY * ratingY
      sum_xy += ratingX * ratingY
      numPairs += 1
    }

    val numerator:Double = sum_xy
    val denominator = sqrt(sum_xx) * sqrt(sum_yy)

    var score:Double = 0.0
    if (denominator != 0) {
      score = numerator / denominator
    }

    return (score, numPairs)
  }

  /** Our main function where the action happens */
  def main(args: Array[String]) {

    // Set the log level to only print errors
    Logger.getLogger("org").setLevel(Level.ERROR)

    // Create a SparkContext without much actual configuration
    // We want EMR's config defaults to be used.
    val conf = new SparkConf()
    conf.setAppName("MovieSimilarities1M")
    val sc = new SparkContext(conf)

    println("\nLoading movie names...")
    val nameDict = loadMovieNames()

    val data = sc.textFile("s3n://[MY-BUCKET-NAME]/ml-1m/ratings.dat")

    // Map ratings to key / value pairs: user ID => movie ID, rating
    val ratings = data.map(l => l.split("::")).map(l => (l(0).toInt, (l(1).toInt, l(2).toDouble)))

    // Emit every movie rated together by the same user.
    // Self-join to find every combination.
    val joinedRatings = ratings.join(ratings)   

    // At this point our RDD consists of userID => ((movieID, rating), (movieID, rating))

    // Filter out duplicate pairs
    val uniqueJoinedRatings = joinedRatings.filter(filterDuplicates)

    // Now key by (movie1, movie2) pairs.
    val moviePairs = uniqueJoinedRatings.map(makePairs).partitionBy(new HashPartitioner(100))

    // We now have (movie1, movie2) => (rating1, rating2)
    // Now collect all ratings for each movie pair and compute similarity
    val moviePairRatings = moviePairs.groupByKey()

    // We now have (movie1, movie2) = > (rating1, rating2), (rating1, rating2) ...
    // Can now compute similarities.
    val moviePairSimilarities = moviePairRatings.mapValues(computeCosineSimilarity).cache()

    //Save the results if desired
    //val sorted = moviePairSimilarities.sortByKey()
    //sorted.saveAsTextFile("movie-sims")

    // Extract similarities for the movie we care about that are "good".

    if (args.length > 0) {
      val scoreThreshold = 0.97
      val coOccurenceThreshold = 1000.0

      val movieID:Int = args(0).toInt

      // Filter for movies with this sim that are "good" as defined by
      // our quality thresholds above     

      val filteredResults = moviePairSimilarities.filter( x =>
        {
          val pair = x._1
          val sim = x._2
          (pair._1 == movieID || pair._2 == movieID) && sim._1 > scoreThreshold && sim._2 > coOccurenceThreshold
        }
      )

      // Sort by quality score.
      val results = filteredResults.map( x => (x._2, x._1)).sortByKey(false).take(50)

      println("\nTop 50 similar movies for " + nameDict(movieID))
      for (result <- results) {
        val sim = result._1
        val pair = result._2
        // Display the similarity result that isn't the movie we're looking at
        var similarMovieID = pair._1
        if (similarMovieID == movieID) {
          similarMovieID = pair._2
        }
        println(nameDict(similarMovieID) + "\tscore: " + sim._1 + "\tstrength: " + sim._2)
      }
    }
  }
}

Редактировать : после терпения код действительно продолжился
Потому что это заняло несколько мгновений, казалось, что он ничего не делал и что вышел, но на самом деле это не так.

...previous stacktrace
log4j:ERROR Either File or DatePattern options are not set for appender [DRFA-stdout].

Loading movie names... 
18/11/06 13:14:11 INFO GPLNativeCodeLoader: Loaded native gpl library 18/11/06 13:14:11 INFO LzoCodec: Successfully loaded & initialized native-lzo library [hadoop-lzo rev 4a14a96f353432301b136f851837191211fcf807]

Top 50 similar movies for Star Wars: Episode IV - A New Hope (1977) Star Wars: Episode V - The Empire Strikes Back (1980)   score:
0.9897917106566659  strength: 2355 Raiders of the Lost Ark (1981)   score: 0.9855548278565054   strength: 1972 Star Wars: Episode VI
- Return of the Jedi (1983) score: 0.9841248359926177   strength: 2113 Indiana Jones and the Last Crusade (1989)    score:
0.9774440028650038  strength: 1397 Shawshank Redemption, The (1994) score: 0.9768332708746131   strength: 1412 Usual Suspects, The (1995)   score: 0.9766875136831684   strength: 1194 Godfather, The (1972)    score: 0.9759284503618028   strength: 1583 Sixth Sense, The (1999)  score: 0.974688767430798    strength: 1480 Schindler's List (1993)  score: 0.9746820121947888   strength: 1422 Terminator, The (1984)   score: 0.9745821991816754   strength: 1746 Back to the Future (1985)    score: 0.9743476892310179   strength: 1845 Fugitive, The (1993) score: 0.9740503810950097   strength: 1429 Princess Bride, The (1987)   score: 0.9737384179609926   strength: 1657 Matrix, The (1999)   score: 0.9732130645719457   strength: 1908 Butch Cassidy and the Sundance Kid (1969)    score: 0.9731825975678353   strength: 1048 Hunt for Red October, The (1990) score: 0.9731286559518592   strength: 1229 Casablanca (1942)    score: 0.9730078799612648   strength: 1113 Saving Private Ryan (1998)   score: 0.9729484985516464   strength: 1709 Ghostbusters (1984)  score: 0.9726721862046535   strength: 1447 Die Hard (1988)  score: 0.9724843514829112   strength: 1369 L.A. Confidential (1997) score: 0.9722077641949141   strength: 1416 Toy Story (1995) score: 0.9721270419610062   strength: 1382 Stand by Me (1986)   score: 0.9718025936506943   strength: 1212 Close Encounters of the Third Kind (1977)    score: 0.9717491756795117   strength: 1242 Monty Python and the Holy Grail (1974)   score: 0.9717238750026624   strength: 1248 Silence of the Lambs, The (1991) score:
0.9714472073187363  strength: 1587 Wizard of Oz, The (1939) score: 0.9713633100564869   strength: 1346 Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)  score:
0.9713269232938938  strength: 1149 One Flew Over the Cuckoo's Nest (1975)   score: 0.9708527915400245   strength: 1125 Ferris Bueller's Day Off (1986)  score: 0.9705811698208009   strength: 1073 Godfather: Part II, The (1974)   score: 0.9704073574007531   strength: 1246 Terminator 2: Judgment Day (1991)    score: 0.9703674024729073   strength: 1889 E.T. the Extra-Terrestrial (1982)    score: 0.9702456868065551   strength: 1714

Это не значит, что ошибка должна выглядеть следующим образом.
Я предполагаю, что log4j не работает должным образом, и ошибка не появляется на видео курса. Может, у кого-то есть решение?

Ответы [ 2 ]

0 голосов
/ 01 марта 2019

Сообщалось об ошибке, начиная с emr-5.18.0: java.io.FileNotFoundException: / stderr (В доступе отказано)

Кажется, проблема исправлена ​​в emr-5.21.0.

0 голосов
/ 06 ноября 2018

spark-submit --class com.sundogsoftware.spark.MovieSimilarities1M /path/to/jar/MovieSimilarities1M-assembly-1.0.jar

вам также нужно указать имя класса

...