Если вас интересует скорость, это выглядит как @ AshOfFire's all(vec == vec[1])
или uniqueN(vec) == 1
. all(...)
имеет лучшую производительность, когда элементы разные, но хуже, когда они одинаковые. Здесь также есть другие сообщения на эту тему: Проверка на равенство между всеми элементами одного вектора
Поскольку вы явно спрашиваете о скорости, я не знаю, следует ли это отмечать как обман или нет. Делая быстрое микробенчмаркинг, вы можете увидеть относительные скорости:
library(data.table)
benchmark_vec <- function(vec){
microbenchmark::microbenchmark(length(unique(vec)) == 1,
all(vec == vec[1]),
isTRUE(max(vec) == min(vec)),
uniqueN(vec)==1,
unit = "relative")
}
Похоже, вам лучше всего использовать uniqueN(vec) == 1
, поскольку isTRUE(max(vec) == min(vec))
довольно медленный, когда элементы не совпадают.
Вектор тех же элементов:
benchmark_vec(rep("a", 1e4))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 6.059888 8.980080 8.807812 9.057240 10.131907 6.538035 100
# all(vec == vec[1]) 2.039980 2.117614 2.517966 2.769089 2.820726 2.147200 100
# isTRUE(max(vec) == min(vec)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# uniqueN(vec) == 1 1.679993 1.794075 2.148665 2.442206 2.547134 1.385782 100
benchmark_vec(rep("a", 1e5))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 5.732161 6.898531 7.935981 7.098417 6.776363 52.733981 100
# all(vec == vec[1]) 2.084232 2.416316 2.366826 2.482896 2.454888 2.025258 100
# isTRUE(max(vec) == min(vec)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# uniqueN(vec) == 1 1.254857 1.653767 1.632287 1.707769 1.755275 1.401932 100
benchmark_vec(rep("a", 1e6))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 5.993300 6.057139 6.478008 6.083278 6.104486 9.124542 100
# all(vec == vec[1]) 2.249211 2.182959 2.261631 2.182345 2.224141 6.421657 100
# isTRUE(max(vec) == min(vec)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# uniqueN(vec) == 1 1.325453 1.451214 1.869176 1.457588 1.470810 6.657961 100
Вектор различных элементов:
benchmark_vec(sample(LETTERS, 1e4, replace = TRUE))
#Unit: relative
# expr min lq mean median uq # max neval
# length(unique(vec)) == 1 2.989151 2.999928 3.233178 3.031249 3.260122 4.471498 100
# all(vec == vec[1]) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# isTRUE(max(vec) == min(vec)) 92.619106 91.765377 89.899963 92.227913 93.951104 64.507502 100
# uniqueN(vec) == 1 1.478271 1.494703 1.608562 1.531235 1.637707 2.528502 100
benchmark_vec(sample(LETTERS, 1e5, replace = TRUE))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 3.142858 3.010220 2.945582 2.887597 2.925129 4.482119 100
# all(vec == vec[1]) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# isTRUE(max(vec) == min(vec)) 97.273487 79.818135 73.850769 75.442748 71.441439 41.772795 100
# uniqueN(vec) == 1 1.280180 1.431999 2.009661 1.431815 1.447287 32.446761 100
benchmark_vec(sample(LETTERS, 1e6, replace = TRUE))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 3.228670 2.898367 2.799075 2.941651 2.914313 1.360938 100
# all(vec == vec[1]) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# isTRUE(max(vec) == min(vec)) 92.506220 79.923456 67.347683 78.362151 75.028194 13.611664 100
# uniqueN(vec) == 1 2.263843 2.031869 1.861165 2.058220 2.051759 1.129074 100