Использование:
df = pd.DataFrame({'region':list('aaabbbccc'),
'gps_height':[2,3,0,3,4,5,1,0,0]})
print (df)
region gps_height
0 a 2
1 a 3
2 a 0
3 b 3
4 b 4
5 b 5
6 c 1
7 c 0
8 c 0
Заменить 0
на пропущенные значения, а затем заменить NAN
s на fillna
на mean
s на GroupBy.transform
для групп:
df['gps_height'] = df['gps_height'].replace(0, np.nan)
df['gps_height']=df['gps_height'].fillna(df.groupby('region')['gps_height'].transform('mean'))
print (df)
region gps_height
0 a 2.0
1 a 3.0
2 a 2.5
3 b 3.0
4 b 4.0
5 b 5.0
6 c 1.0
7 c 1.0
8 c 1.0
Или отфильтровать 0
значений, объединить means
и отобразить все 0
строк:
m = df['gps_height'] != 0
s = df[m].groupby('region')['gps_height'].mean()
df.loc[~m, 'gps_height'] = df['region'].map(s)
#alternative
#df['gps_height'] = np.where(~m, df['region'].map(s), df['gps_height'])
print (df)
region gps_height
0 a 2.0
1 a 3.0
2 a 2.5
3 b 3.0
4 b 4.0
5 b 5.0
6 c 1.0
7 c 1.0
8 c 1.0