Я пытаюсь сделать очень простой neural network
для игры 2048
, но я продолжаю получать ошибки при работе оптимизатора scipy
. При работе в сети с функцией
NN_game
с использованием весов той же формы, что и в оптимизаторе, у меня нет проблем.
import numpy as np
import scipy.optimize as opt
import NxN_2048 as game
import pickle, os, time
def gamestart(n):
return game.new_elements([[0] * n] * n)
def activation(weight, input_layer):
matmul = np.matmul(weight, input_layer)
pos = 1 * (matmul > 0)
neg = 0.1 * (matmul <= 0)
return (pos + neg) * matmul + 1
def NN_move(board,w1,w2,w3):
flat_board = np.array(board).flatten().astype(np.float32) #flat_board has size (n**2, 1)
h1 = activation(w1, flat_board) #h1 has shape (n, 1)
#print(h1.shape)
h2 = activation(w2, h1) #h2 has shape (2*n, 1)
#print(h2.shape)
h3 = activation(w3, h2) #h3 has shape (4, 1)
#print(h3.shape)
move_func = [game.shiftup,game.shiftdown,game.shiftleft,game.shiftright]
while True:
if move_func[np.argmax(h3)](board) != board:
l = ['up','down','left','right']
#print(l[np.argmax(h3)])
return move_func[np.argmax(h3)](board)
else:
h3[np.argmax(h3)] = np.NINF
def NN_game(w1,w2,w3):
board = gamestart(4)
while game.shiftup(board)!=board or game.shiftdown(board)!=board or game.shiftleft(board)!=board or game.shiftright(board)!=board:
board = NN_move(board,w1,w2,w3)
board = game.new_elements(board)
score = sum(sum(np.array(board)))
return score
def NN_game_packed_args(args):
return NN_game(args[0], args[1], args[2])
def NN_train():
n = 4
w1 = np.random.randn(n, n**2)
w2 = np.random.randn(2*n, n)
w3 = np.random.randn(4, 2*n)
lambda_ = 10
#game_score = NN_game_packed_args([w1,w2,w3])
#print(game_score)
def cross_entropy(args):
game_score = NN_game_packed_args(args)
return game_score + lambda_ * (sum(sum(args[0])) + sum(sum(args[1])) + sum(sum(args[2])))
for i in range(10000):
results = opt.minimize(cross_entropy, (w1,w2,w3) , method='BFGS')
print(results.x[0].shape, results.x[1].shape, results.x[2].shape)
w1,w2,w3 = results.x[0],results.x[1],results.x[2]
if i % 1 == 0:
print('Iterations:', str(i),' | Current scoring:', str(NN_game_packed_args((w1,w2,w3))))
return w1,w2,w3
NN_train()
Я пытаюсь использовать scipy.optimize.minimize
, чтобы минимизировать кросс-энтропию (в функции NN_train), но я получаю сообщение об ошибке
ValueError: операнды не могут передаваться вместе с фигурами
(4,16) (8,4)
Это несмотря на то, что код иногда работает, и после 1 итерации эта ошибка появится. Я проверил, что формы слоев активации, которые я использую, правильные, поэтому я не слишком уверен, что происходит.
Я загрузил другой файл, который я использую для генерации платы здесь