ГИС / GEOTiff / GDAL / Python Как получить координаты из пикселя - PullRequest
0 голосов
/ 05 мая 2018

Я работаю над проектом по обнаружению объекта из файлов GEOTiff и возвращению координат объектов, и эти выходные данные будут использоваться для полета дрона к этим координатам

Я использую тензор потока с YOLO v2 (каркас детектора изображений) и OpenCV для обнаружения объектов, которые мне нужны в GEOTiff

import cv2
from darkflow.net.build import TFNet
import math
import gdal

# initial stage for YOLO v2 
options = {
    'model': 'cfg/yolo.cfg',
    'load': 'bin/yolov2.weights',
    'threshold': 0.4,
}
tfnet = TFNet(options)

# OpenCV read Image
img = cv2.imread('final.tif', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#Predict the image
result = tfnet.return_predict(img)

#Calculate the center and radius of each objects
i = 0
while i < len(result):
    tl = (result[i]['topleft']['x'], result[i]['topleft']['y'])
    br = (result[i]['bottomright']['x'], result[i]['bottomright']['y'])
    point = (int((result[i]['topleft']['x']+result[i]['bottomright']['x'])/2), int((result[i]['topleft']['y']+result[i]['bottomright']['y'])/2))
    radius = int(math.hypot(result[i]['topleft']['x'] - point[0], result[i]['topleft']['y'] - point[1]))
    label = result[i]['label']
    result[i]['pointx'] = point[0]
    result[i]['pointy'] = point[1]
    result[i]['radius'] = radius    
    i += 1

print(result)

Таким образом, результаты получаются как набор JSON

[{'label': 'person', 'confidence': 0.6090355, 'topleft': {'x': 3711, 'y': 1310}, 'bottomright': {'x': 3981, 'y': 1719}, 'pointx': 3846, 'pointy': 1514, 'radius': 244}]

как вы можете видеть, местоположение объекта возвращается в пикселях (x, y) и я хочу использовать эти x, y для преобразования в координаты в широте, lng поэтому я пытаюсь использовать GDAL (библиотека используется для чтения информации GEO, содержащейся внутри изображения)

так вот информация GEO об изображении с помощью gdalinfo в терминале

Driver: GTiff/GeoTIFF
Files: final.tif
Size is 8916, 6888
Coordinate System is:
PROJCS["WGS 84 / UTM zone 47N",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",99],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]],
    AXIS["Easting",EAST],
    AXIS["Northing",NORTH],
    AUTHORITY["EPSG","32647"]]
Origin = (667759.259870000067167,1546341.352920000208542)
Pixel Size = (0.032920000000000,-0.032920000000000)
Metadata:
  AREA_OR_POINT=Area
  TIFFTAG_SOFTWARE=pix4dmapper
Image Structure Metadata:
  COMPRESSION=LZW
  INTERLEAVE=PIXEL
Corner Coordinates:
Upper Left  (  667759.260, 1546341.353) (100d33'11.42"E, 13d58'57.03"N)
Lower Left  (  667759.260, 1546114.600) (100d33'11.37"E, 13d58'49.65"N)
Upper Right (  668052.775, 1546341.353) (100d33'21.20"E, 13d58'56.97"N)
Lower Right (  668052.775, 1546114.600) (100d33'21.15"E, 13d58'49.59"N)
Center      (  667906.017, 1546227.976) (100d33'16.29"E, 13d58'53.31"N)
Band 1 Block=8916x1 Type=Byte, ColorInterp=Red
  NoData Value=-10000
Band 2 Block=8916x1 Type=Byte, ColorInterp=Green
  NoData Value=-10000
Band 3 Block=8916x1 Type=Byte, ColorInterp=Blue
  NoData Value=-10000
Band 4 Block=8916x1 Type=Byte, ColorInterp=Alpha
  NoData Value=-10000

Кто-нибудь?

1 Ответ

0 голосов
/ 06 мая 2018

Вам необходимо преобразовать координаты пикселей в географическое пространство, используя матрицу GeoTransform, которая связана с вашими растровыми файлами. Используя GDAL, вы можете сделать что-то вроде следующего:

# open the dataset and get the geo transform matrix
ds = gdal.Open('final.tif') 
xoffset, px_w, rot1, yoffset, px_h, rot2 = ds.GetGeoTransform()

# supposing x and y are your pixel coordinate this 
# is how to get the coordinate in space.
posX = px_w * x + rot1 * y + xoffset
posY = rot2 * x + px_h * y + yoffset

# shift to the center of the pixel
posX += px_w / 2.0
posY += px_h / 2.0

Конечно, позиция, которую вы получите, будет относительно той же системы координат, которая используется для вашего набора растровых данных. Поэтому, если вам нужно преобразовать его в широту / долготу, вам придется проделать дальнейшие разработки:

# get CRS from dataset 
crs = osr.SpatialReference()
crs.ImportFromWkt(ds.GetProjectionRef())
# create lat/long crs with WGS84 datum
crsGeo = osr.SpatialReference()
crsGeo.ImportFromEPSG(4326) # 4326 is the EPSG id of lat/long crs 
t = osr.CoordinateTransformation(crs, crsGeo)
(lat, long, z) = t.TransformPoint(posX, posY)

Извините, я не очень хорошо знаю Python, поэтому, вероятно, вам придется адаптировать этот код. Ознакомьтесь с документацией GeoTransform здесь для API C ++ , чтобы узнать больше о матричных элементах.

...