- Пример данных для работы с:
Чтобы создать сокращенный пример, это вывод dput (df):
df <- structure(list(SubjectID = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L), .Label = c("1", "2", "3"), class = "factor"), EventNumber = structure(c(1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("1", "2"), class = "factor"),
EventType = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L
), .Label = c("A", "B"), class = "factor"), Param1 = c(0.3,
0.21, 0.87, 0.78, 0.9, 1.2, 1.4, 1.3, 0.6, 0.45, 0.45, 0.04,
0, 0.1, 0.03, 0.01, 0.09, 0.06, 0.08, 0.09, 0.03, 0.04, 0.04,
0.02), Param2 = c(45, 38, 76, 32, 67, 23, 27, 784, 623, 54,
54, 1056, 487, 341, 671, 859, 7769, 2219, 4277, 4060, 411,
440, 224, 57), Param3 = c(1.5, 1.7, 1.65, 1.32, 0.6, 0.3,
2.5, 0.4, 1.4, 0.67, 0.67, 0.32, 0.1, 0.15, 0.22, 0.29, 0.3,
0.2, 0.8, 1, 0.9, 0.8, 0.3, 0.1), Param4 = c(0.14, 0, 1,
0.86, 0, 0.6, 1, 1, 0.18, 0, 0, 0.39, 0, 1, 0.29, 0.07, 0.33,
0.53, 0.29, 0.23, 0.84, 0.61, 0.57, 0.59), Param5 = c(0.18,
0, 1, 0, 1, 0, 0.09, 1, 0.78, 0, 0, 1, 0.2, 0, 0.46, 0.72,
0.16, 0.22, 0.77, 0.52, 0.2, 0.68, 0.58, 0.17), Param6 = c(0,
1, 0.75, 0, 0.14, 0, 1, 0, 1, 0.27, 0, 1, 0, 0.23, 0.55,
0.86, 1, 0.33, 1, 1, 0.88, 0.75, 0, 0), AbsoluteTime = structure(c(1522533600,
1522533602, 1522533604, 1522533604, 1525125600, 1525125602,
1525125604, 1519254000, 1519254002, 1519254004, 1519254006,
1521759600, 1521759602, 1521759604, 1521759606, 1521759608,
1517353224, 1517353226, 1517353228, 1517353230, 1517439600,
1517439602, 1517439604, 1517439606), class = c("POSIXct",
"POSIXt"), tzone = "")), row.names = c(NA, -24L), class = "data.frame")
df
Реальные данные имеют 20 субъектов, EventNumbers от 1 до 100, а параметры от Param1 до Param40 (в зависимости от эксперимента).
Количество строк около 60 000 наблюдений.
- Чего я хочу достичь:
Для df создайте n * 40 новых столбцов. # (40 или любое количество параметров, которые будут выбраны позже.)
Думайте о n
как о «шагах в будущее».
Назовите 40 * n вновь созданных столбцов:
Param1_2, Param2_2, Param3_2, ..., Param39_2, Param40_2, ...,
Param1_3, Param2_3, Param3_3, ..., Param39_3, Param40_3, ...,
...
Param1_n, Param2_n, Param3_n, ..., Param39_n, Param40_n
В результате в столбцах
Param1_1, Param2_1, Param1_2, Param2_2, Param1_3, Param2_3, Param1_4, Param2_4, ... Param1_n, Param2_n
Таким образом, каждое наблюдение подмножества df[X, c(4:9)]
будет получать дополнительный набор переменных со значениями от df[X+1, c(4:9)]
до df[X+n, c(4:9)]
.
Вот как должен выглядеть новый файл df.extended для n = 1:
df.extended <- structure(list(SubjectID = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3), EventNumber = c(1, 1,
1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2,
2), EventType = c("A", "A", "A", "A", "B", "B", "B", "A", "A",
"A", "A", "B", "B", "B", "B", "B", "A", "A", "A", "A", "B", "B",
"B", "B"), Param1 = c(0.3, 0.21, 0.87, 0.78, 0.9, 1.2, 1.4, 1.3,
0.6, 0.45, 0.45, 0.04, 0, 0.1, 0.03, 0.01, 0.05, 0.07, 0.06,
0.01, 0.01, 0.01, 0.07, 0.04), Param2 = c(45, 38, 76, 32, 67,
23, 27, 784, 623, 54, 54, 1056, 487, 341, 671, 859, 1858, 640,
8181, 220, 99, 86, 170, 495), Param3 = c(1.5, 1.7, 1.65, 1.32,
0.6, 0.3, 2.5, 0.4, 1.4, 0.67, 0.67, 0.32, 0.1, 0.15, 0.22, 0.29,
1.5, 0.9, 0.8, 0.9, 0.1, 0, 0.8, 0.1), Param4 = c(0.14, 0, 1,
0.86, 0, 0.6, 1, 1, 0.18, 0, 0, 0.39, 0, 1, 0.29, 0.07, 0.64,
0.11, 0.12, 0.32, 0.55, 0.67, 0.83, 0.82), Param5 = c(0.18, 0,
1, 0, 1, 0, 0.09, 1, 0.78, 0, 0, 1, 0.2, 0, 0.46, 0.72, 0.27,
0.14, 0.7, 0.67, 0.23, 0.44, 0.61, 0.76), Param6 = c(0, 1, 0.75,
0, 0.14, 0, 1, 0, 1, 0.27, 0, 1, 0, 0.23, 0.55, 0.86, 1, 0.56,
0.45, 0.5, 0, 0, 0.89, 0.11), AbsoluteTime = c("2018-04-01 00:00:00",
"2018-04-01 00:00:02", "2018-04-01 00:00:04", "2018-04-01 00:00:04",
"2018-05-01 00:00:00", "2018-05-01 00:00:02", "2018-05-01 00:00:04",
"2018-02-22 00:00:00", "2018-02-22 00:00:02", "2018-02-22 00:00:04",
"2018-02-22 00:00:06", "2018-03-23 00:00:00", "2018-03-23 00:00:02",
"2018-03-23 00:00:04", "2018-03-23 00:00:06", "2018-03-23 00:00:08",
"2018-01-31 00:00:24", "2018-01-31 00:00:26", "2018-01-31 00:00:28",
"2018-01-31 00:00:30", "2018-02-01 00:00:00", "2018-02-01 00:00:02",
"2018-02-01 00:00:04", "2018-02-01 00:00:06"), Param1_2 = c(0.21,
0.87, 0.78, NA, 1.2, 1.4, NA, 0.6, 0.45, 0.45, NA, 0, 0.1, 0.03,
0.01, NA, 0.07, 0.07, 0.08, NA, 0.09, 0.06, 0.01, NA), Param2_2 = c(38,
76, 32, NA, 23, 27, NA, 623, 54, 54, NA, 487, 341, 671, 859,
NA, 6941, 4467, 808, NA, 143, 301, 219, NA), Param3_2 = c(1.7,
1.65, 1.32, NA, 0.3, 2.5, NA, 1.4, 0.67, 0.67, NA, 0.1, 0.15,
0.22, 0.29, NA, 1, 1, 0.1, NA, 0.5, 1, 0.3, NA), Param4_2 = c(0,
1, 0.86, NA, 0.6, 1, NA, 0.18, 0, 0, NA, 0, 1, 0.29, 0.07, NA,
0.31, 0.16, 0.68, NA, 0.86, 0.47, 0.47, NA), Param5_2 = c(0,
1, 0, NA, 0, 0.09, NA, 0.78, 0, 0, NA, 0.2, 0, 0.46, 0.72, NA,
0.29, 0.26, 0.1, NA, 0.88, 0.86, 0.95, NA), Param6_2 = c(1, 0,
0, NA, 0, 1, NA, 1, 0.27, 0, NA, 0, 0.23, 0.55, 0.86, NA, 0.68,
0.66, 0, NA, 0.44, 1, 0.22, NA)), row.names = c(NA, 24L), class = "data.frame")
df.extended
Как это можно решить без использования циклов, написания индексов столбцов вручную и т. Д .? Напишите функцию для пробной версии 2 и используйте doBy
?
Мои мысли и что я уже сделал, чтобы решить это:
Пробная версия 1:
- Цикл по SubjectIDs в цикле for
- Во внутреннем цикле for циклически перебирать EventNumber
- В другом внутреннем цикле for циклически перебирайте строки
- Получить первую строку, взяв df [1,] и сохранить в df.temp
- Объединить df.temp с df [2, параметры] #
- Объединить объединить df.temp с df [3, параметры] и т. Д.
- Сохранить все полученные df.temps в df.final
Проблемы, с которыми я столкнулся: Шаг 5:
df.temp <- df[1,]
df.temp <- merge(df.temp, df[2, !(colnames(df) == "AbsoluteTime")], by = c("SubjectID", "EventNumber", "EventType"))
df.temp <- merge(df.temp, df[3, !(colnames(df) == "AbsoluteTime")], by = c("SubjectID", "EventNumber", "EventType"))
df.temp <- merge(df.temp, df[4, !(colnames(df) == "AbsoluteTime")], by = c("SubjectID", "EventNumber", "EventType"))
Warning:
In merge.data.frame(df.temp, df[4, ], by = c("SubjectID", "EventNumber", :
column names ‘Param1.x’, ‘Param2.x’, ‘Param3.x’, ‘Param4.x’, ‘Param5.x’, ‘Param6.x’, ‘AbsoluteTime.x’, ‘Param1.y’, ‘Param2.y’,
"Param3.y", "Param4.y", "Param5.y", "Param6.y", "AbsoluteTime.y" являются
дублируется в результате.
- Имена столбцов повторяются, см. Предупреждение.
- Я не могу понять, как легко создавать имена столбцов / переименовывать новые столбцы на основе заданного имени столбца и переменной.
Должен быть лучший путь, чем этот:
n <- 3
names_vector <- c()
for (n in seq(from = c(1), to = n)) {
for (i in names(df[4:9])) {
names_vector <- c(names_vector, paste0(i, "_", c(n+1)))
}
}
names(df.temp)[c(4:9)] <- parameters
names(df.temp)[c(11:ncol(df.temp))] <- names_vector
names(df.temp)
- Кроме того, как я могу предотвратить нарушение скрипта последними n-1 строками? Это большая работа, которую нужно выполнять вручную, и я думаю, что она может привести к ошибкам!
Пробная версия 2:
- Цикл по SubjectIDs в цикле for
- Во внутреннем цикле for циклически перебирать EventNumber
- Получить все строки параметров в новом фрейме данных, кроме первой строки
- Добавить строку с NA
- используйте cbind () для объединения строк
- Повторите n раз.
Это код для одного SubjectID и одного EventNumber:
df.temp <- df[which(df$SubjectID == "1" & df$EventNumber == "1"), ]
df.temp2 <- df.temp[2:nrow(df.temp)-1, parameters]
df.temp2 <- rbind(df.temp2, NA)
df.temp <- cbind(df.temp, df.temp2)
df.temp2 <- df.temp[3:nrow(df.temp)-1, parameters]
df.temp2 <- rbind(df.temp2, NA, NA)
df.temp <- cbind(df.temp, df.temp2)
df.temp2 <- df.temp[4:nrow(df.temp)-1, parameters]
df.temp2 <- rbind(df.temp2, NA, NA, NA)
df.temp <- cbind(df.temp, df.temp2)
n <- 3
names_vector <- c()
for (n in seq(from = c(1), to = n)) {
for (i in names(df[4:9])) {
print(i)
print(n)
names_vector <- c(names_vector, paste0(i, "_", c(n+1)))
}
}
names(df.temp)[c(4:9)] <- parameters
names(df.temp)[c(11:ncol(df.temp))] <- names_vector
df.temp
- Это решает проблему с пропущенными строками (в моем случае допустимы NA).
- Все еще много работы вручную / для циклов и ошибок!?