Spark: объединение может выполняться только для таблиц с совместимыми типами столбцов. Структура <имя, идентификатор>! = Структура <идентификатор, имя> - PullRequest
0 голосов
/ 05 сентября 2018

Ошибка: Объединение может выполняться только для таблиц с совместимыми типами столбцов. struct (tier: string, skyward_number: string, skyward_points: string) <> struct (skyward_number: string, tier: string, skyward_points: string) в первом столбце второй таблицы ;;

Здесь порядок структурных полей другой, но в остальном все одинаково.

dataframe1 Schema

root
 |-- emcg_uuid: string (nullable = true)
 |-- name: string (nullable = true)
 |-- phone_no: string (nullable = true)
 |-- dob: string (nullable = true)
 |-- country: string (nullable = true)
 |-- travel_type: string (nullable = true)
 |-- gdpr_restricted_flg: string (nullable = false)
 |-- gdpr_reason_code: string (nullable = false)
 |-- document: map (nullable = true)
 |    |-- key: string
 |    |-- value: string (valueContainsNull = true)
 |-- skyward: struct (nullable = false)
 |    |-- tier: string (nullable = false)
 |    |-- skyward_number: string (nullable = false)
 |    |-- skyward_points: string (nullable = false)

dataframe2 schema
root
 |-- emcg_uuid: string (nullable = true)
 |-- name: string (nullable = true)
 |-- phone_no: string (nullable = true)
 |-- dob: string (nullable = true)
 |-- country: string (nullable = true)
 |-- travel_type: string (nullable = true)
 |-- gdpr_restricted_flg: string (nullable = true)
 |-- gdpr_reason_code: string (nullable = true)
 |-- document: map (nullable = true)
 |    |-- key: string
 |    |-- value: string (valueContainsNull = true)
 |-- skyward: struct (nullable = false)
 |    |-- skyward_number: string (nullable = false)
 |    |-- tier: string (nullable = false)
 |    |-- skyward_points: string (nullable = false)

Как это решить?

Ответы [ 3 ]

0 голосов
/ 05 сентября 2018

Если известно только одно поле и имя известно («к небу»), можно разрешить как:

val data = List(("1", "2", "3"))
val bulkDF = data.toDF("emcg_uuid", "tier", "skyward_number")

// union parts
val tsDF = bulkDF.withColumn("skyward", struct($"tier", $"skyward_number"))
val stDF = bulkDF.withColumn("skyward", struct($"skyward_number", $"tier"))

// change struct "skyward" in last stDF
val schema = tsDF.schema.fields.find(_.name == "skyward").get
val updatedStructNames: Seq[Column] = schema.dataType.asInstanceOf[StructType].fieldNames.map(name => col("skyward." + name))
val withUpdatedSchema = stDF.withColumn("skyward", struct(updatedStructNames: _*))

// union
tsDF.union(withUpdatedSchema).show(false)

Для многих таких структурных полей можно использовать только несколько циклов.

0 голосов
/ 05 сентября 2018
//preserves the order the columns while doing union
  def getStructRecursiveDataFrame(df1 : DataFrame, df2 : DataFrame,columns : Array[String]) : DataFrame = {
    if(columns.isEmpty) {
      df2
    }
    else {
      println("test")
      val col_name = columns.head
      val col_schema = df1.schema.fields.find(_.name == col_name).get
      if(col_schema.dataType.typeName.equals("struct")){
        println("test1")
        val updatedStructNames: Seq[Column] = col_schema.dataType.asInstanceOf[StructType].fieldNames.map(name => col(col_name+"." + name))
        getStructRecursiveDataFrame(df1,df2.withColumn(col_name, struct(updatedStructNames: _*)),columns.tail)
      }
      else{ getStructRecursiveDataFrame(df1,df2,columns.tail)}
    }
  }

  def unionByName(a:  org.apache.spark.sql.DataFrame, b:  org.apache.spark.sql.DataFrame):  org.apache.spark.sql.DataFrame = {

    val b_new_df = getStructRecursiveDataFrame(a,b,a.columns)
    val columns_seq = a.columns.toSet.intersect(b_new_df.columns.toSet).map(col).toSeq
    a.select(columns_seq: _*).union(b_new_df.select(columns_seq: _*))
  }

Результаты

[INFO] DATAFRAME-1 SCHEME
root
 |-- emcg_uuid: string (nullable = true)
 |-- name: string (nullable = true)
 |-- phone_no: string (nullable = true)
 |-- dob: string (nullable = true)
 |-- country: string (nullable = true)
 |-- travel_type: string (nullable = true)
 |-- gdpr_restricted_flg: string (nullable = false)
 |-- gdpr_reason_code: string (nullable = false)
 |-- document: map (nullable = true)
 |    |-- key: string
 |    |-- value: string (valueContainsNull = true)
 |-- skyward: struct (nullable = false)
 |    |-- tier: string (nullable = false)
 |    |-- skyward_number: string (nullable = false)
 |    |-- skyward_points: string (nullable = false)

[INFO] DATAFRAME-2 SCHEME
root
 |-- emcg_uuid: string (nullable = true)
 |-- name: string (nullable = true)
 |-- phone_no: string (nullable = true)
 |-- dob: string (nullable = true)
 |-- country: string (nullable = true)
 |-- travel_type: string (nullable = true)
 |-- gdpr_restricted_flg: string (nullable = true)
 |-- gdpr_reason_code: string (nullable = true)
 |-- document: map (nullable = true)
 |    |-- key: string
 |    |-- value: string (valueContainsNull = true)
 |-- skyward: struct (nullable = false)
 |    |-- skyward_number: string (nullable = false)
 |    |-- tier: string (nullable = false)
 |    |-- skyward_points: string (nullable = false)

[INFO] DATAFRAME SCHEME AFTER THE UNION
root
 |-- skyward: struct (nullable = false)
 |    |-- skyward_number: string (nullable = false)
 |    |-- tier: string (nullable = false)
 |    |-- skyward_points: string (nullable = false)
 |-- name: string (nullable = true)
 |-- document: map (nullable = true)
 |    |-- key: string
 |    |-- value: string (valueContainsNull = true)
 |-- phone_no: string (nullable = true)
 |-- travel_type: string (nullable = true)
 |-- gdpr_restricted_flg: string (nullable = true)
 |-- dob: string (nullable = true)
 |-- gdpr_reason_code: string (nullable = true)
 |-- country: string (nullable = true)
 |-- emcg_uuid: string (nullable = true)

[INFO] TEST CASE FOR ANONYMIZATION VALIDATION
[INFO] INPUT DATA
+----+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
|name|phone_no  |travel_type|gdpr_restricted_flg|dob       |gdpr_reason_code|country|emcg_uuid|document                                   |skyward          |
+----+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
|ravi|8747436090|freq       |                   |1988-05-28|                |dubai  |uuid_1   |Map(document_type -> passport, id -> A3343)|[123456,blue,687]|
|aaaa|8747436091|freg       |                   |1988-06-25|                |europe |uuid_2   |Map(document_type -> passport, id -> A3341)|[123456,blue,687]|
|bbbb|8747436092|reg        |                   |1988-07-26|                |india  |uuid_3   |Map(document_type -> passport, id -> A3345)|[123456,blue,687]|
|cccc|8747436093|na         |                   |1988-08-27|                |georgia|uuid_4   |Map(document_type -> passport, id -> A3349)|[123456,blue,687]|
|dddd|8747436094|na         |                   |1988-09-29|                |swis   |uuid_5   |Map(document_type -> passport, id -> B3343)|[123456,blue,687]|
|null|8747436095|freq       |                   |1988-02-30|                |us     |uuid_6   |Map(document_type -> passport, id -> C3343)|[123456,blue,687]|
|null|8747436096|na         |                   |1988-01-01|                |canada |uuid_7   |Map(document_type -> null, id -> D3343)    |[123456,blue,687]|
+----+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+

[INFO] EXPECTED OUTPUT
+-------+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
|name   |phone_no  |travel_type|gdpr_restricted_flg|dob       |gdpr_reason_code|country|emcg_uuid|document                                   |skyward          |
+-------+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
|DDDDDDD|9999999   |freq       |Y                  |1988-05-XX|13-001          |XXXXXXX|uuid_1   |Map(document_type -> ZZZZZ, id -> HH343)   |[123456,blue,687]|
|aaaa   |8747436091|freg       |                   |1988-06-25|                |europe |uuid_2   |Map(document_type -> passport, id -> A3341)|[123456,blue,687]|
|DDDDDDD|9999999   |reg        |Y                  |1988-07-XX|13-001          |XXXXXXX|uuid_3   |Map(document_type -> ZZZZZ, id -> HH345)   |[123456,blue,687]|
|cccc   |8747436093|na         |                   |1988-08-27|                |georgia|uuid_4   |Map(document_type -> passport, id -> A3349)|[123456,blue,687]|
|dddd   |8747436094|na         |                   |1988-09-29|                |swis   |uuid_5   |Map(document_type -> passport, id -> B3343)|[123456,blue,687]|
|null   |8747436095|freq       |                   |1988-02-30|                |us     |uuid_6   |Map(document_type -> passport, id -> C3343)|[123456,blue,687]|
|null   |9999999   |na         |Y                  |1988-01-XX|13-001          |XXXXXXX|uuid_7   |Map(document_type -> null, id -> HH343)    |[123456,blue,687]|
+-------+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+

[INFO] ACTUAL OUTPUT
+-------+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
|name   |phone_no  |travel_type|gdpr_restricted_flg|dob       |gdpr_reason_code|country|emcg_uuid|document                                   |skyward          |
+-------+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
|DDDDDDD|9999999   |freq       |Y                  |1988-05-XX|13-001          |XXXXXXX|uuid_1   |Map(document_type -> ZZZZZ, id -> HH343)   |[UUUUU,blue,JJ7] |
|aaaa   |8747436091|freg       |                   |1988-06-25|                |europe |uuid_2   |Map(document_type -> passport, id -> A3341)|[123456,blue,687]|
|DDDDDDD|9999999   |reg        |Y                  |1988-07-XX|13-001          |XXXXXXX|uuid_3   |Map(document_type -> ZZZZZ, id -> HH345)   |[UUUUU,blue,JJ7] |
|cccc   |8747436093|na         |                   |1988-08-27|                |georgia|uuid_4   |Map(document_type -> passport, id -> A3349)|[123456,blue,687]|
|dddd   |8747436094|na         |                   |1988-09-29|                |swis   |uuid_5   |Map(document_type -> passport, id -> B3343)|[123456,blue,687]|
|null   |8747436095|freq       |                   |1988-02-30|                |us     |uuid_6   |Map(document_type -> passport, id -> C3343)|[123456,blue,687]|
|null   |9999999   |na         |Y                  |1988-01-XX|13-001          |XXXXXXX|uuid_7   |Map(document_type -> null, id -> HH343)    |[UUUUU,blue,JJ7] |
+-------+----------+-----------+-------------------+----------+----------------+-------+---------+-------------------------------------------+-----------------+
0 голосов
/ 05 сентября 2018

Поведение Spark по умолчанию для union - это стандартное поведение SQL, поэтому сопоставление по позиции. Это означает, что схема в обоих DataFrames должна содержать одинаковые поля с одинаковыми полями в одинаковом порядке.

Если вы хотите сопоставить схему по имени, используйте unionByName, представленный в Spark 2.3.

Вы также можете переназначить поля:

val df1 = ...
val df2 = /...
df1.toDF(df2.columns: _*).union(df2)

Редактировать: я видел редактирование сейчас.

Вы можете снова добавить эти столбцы:

import org.apache.spark.sql.functions._
val withCorrectedStruct = df1.withColumn("skyward", struct($"skyward_number", $"tier", $"skyward_points"))
...