Я использую следующий код и получаю выводное значение размера (2,9), которое затем пытаюсь преобразовать в размер (3,3,2). Я надеялся, что вызов reshape с использованием (3,3,2) в качестве измерений нового массива будет принимать каждую строку массива 2x9, формировать его в массив 3x3 и оборачивать эти два массива 3x3 в другой. массив.
Например, когда я индексирую результат , мне нужно следующее поведение:
input: print(result)
output: [[ 2. 2. 1. 0. 8. 5. 2. 4. 5.]
[ 4. 7. 5. 6. 4. 3. -3. 2. 1.]]
result = result.reshape((3,3,2))
DESIRED NEW BEHAVIOR
input: print(result[:,:,0])
output: [[2. 2. 1.]
[0. 8. 5.]
[2. 4. 5.]]
input: print(result[:,:,1])
output: [[ 4. 7. 5.]
[ 6. 4. 3.]
[-3. 2. 1.]]
ACTUAL NEW BEHAVIOR
input: print(result[:,:,0])
output: [[2. 1. 8.]
[2. 5. 7.]
[6. 3. 2.]]
input: print(result[:,:,1])
output: [[ 2. 0. 5.]
[ 4. 4. 5.]
[ 4. -3. 1.]]
Есть ли способ указать для изменения формы, что я хотел бы идти строка за строкой вдоль измерения глубины? Я очень озадачен тем, почему numpy по умолчанию делает выбор для изменения формы.
Вот код, который я использую для получения матрицы result , этот код может или не может быть необходим для анализа моей проблемы. Я чувствую, как будто это не будет необходимости, но я включаю это для полноты:
import numpy as np
# im2col implementation assuming width/height dimensions of filter and input_vol
# are the same (i.e. input_vol_width is equal to input_vol_height and the same
# for the filter spatial dimensions, although input_vol_width need not equal
# filter_vol_width)
def im2col(input, filters, input_vol_dims, filter_size_dims, stride):
receptive_field_size = 1
for dim in filter_size_dims:
receptive_field_size *= dim
output_width = output_height = int((input_vol_dims[0]-filter_size_dims[0])/stride + 1)
X_col = np.zeros((receptive_field_size,output_width*output_height))
W_row = np.zeros((len(filters),receptive_field_size))
pos = 0
for i in range(0,input_vol_dims[0]-1,stride):
for j in range(0,input_vol_dims[1]-1,stride):
X_col[:,pos] = input[i:i+stride+1,j:j+stride+1,:].ravel()
pos += 1
for i in range(len(filters)):
W_row[i,:] = filters[i].ravel()
bias = np.array([[1], [0]])
result = np.dot(W_row, X_col) + bias
print(result)
if __name__ == '__main__':
x = np.zeros((7, 7, 3))
x[:,:,0] = np.array([[0,0,0,0,0,0,0],
[0,1,1,0,0,1,0],
[0,2,2,1,1,1,0],
[0,2,0,2,1,0,0],
[0,2,0,0,1,0,0],
[0,0,0,1,1,0,0],
[0,0,0,0,0,0,0]])
x[:,:,1] = np.array([[0,0,0,0,0,0,0],
[0,2,0,1,0,2,0],
[0,0,1,2,1,0,0],
[0,2,0,0,2,0,0],
[0,2,1,0,0,0,0],
[0,1,2,2,2,0,0],
[0,0,0,0,0,0,0]])
x[:,:,2] = np.array([[0,0,0,0,0,0,0],
[0,0,0,2,1,1,0],
[0,0,0,2,2,0,0],
[0,2,1,0,2,2,0],
[0,0,1,2,1,2,0],
[0,2,0,0,2,1,0],
[0,0,0,0,0,0,0]])
w0 = np.zeros((3,3,3))
w0[:,:,0] = np.array([[1,1,0],
[1,-1,1],
[-1,1,1]])
w0[:,:,1] = np.array([[-1,-1,0],
[1,-1,1],
[1,-1,-1]])
w0[:,:,2] = np.array([[0,0,0],
[0,0,1],
[1,0,1]]
w1 = np.zeros((3,3,3))
w1[:,:,0] = np.array([[0,-1,1],
[1,1,0],
[1,1,0]])
w1[:,:,1] = np.array([[-1,-1,1],
[1,0,1],
[0,1,1]])
w1[:,:,2] = np.array([[-1,-1,0],
[1,-1,0],
[1,1,0]])
filters = np.array([w0,w1])
im2col(x,np.array([w0,w1]),x.shape,w0.shape,2)