Вопрос: Является ли временная задержка хорошим способом справиться с ограничениями частоты запросов?
Я очень плохо знаком с запросами, API и веб-сервисами. Я пытаюсь создать веб-сервис, который с помощью идентификатора выполняет запрос к API MusicBrainz и извлекает некоторую информацию. Однако, очевидно, я делаю слишком много запросов или делаю их слишком быстро. В последней строке кода, если для параметра delay
установлено значение 0
, появится эта ошибка:
{'error': 'Your requests are exceeding the allowable rate limit. Please see http://wiki.musicbrainz.org/XMLWebService for more information.'}
И, посмотрев эту ссылку, я обнаружил, что:
The rate at which your IP address is making requests is measured. If that rate is too high, all your requests will be declined (http 503) until the rate drops again. Currently that rate is (on average) 1 request per second.
Поэтому я подумал: ладно, я вставлю задержку в 1 секунду, и она будет работать. И это сработало, но я думаю, что есть более хорошие, аккуратные и умные способы решения такой проблемы. Вы знаете один?
КОД:
####################################################
################### INSTRUCTIONS ###################
####################################################
'''
This script runs locally and returns a JSON formatted file, containing
information about the release-groups of an artist whose MBID must be provided.
'''
#########################################
############ CODE STARTS ################
#########################################
#IMPORT PACKAGES
#All of them come with Anaconda3 installation, otherwise they can be installed with pip
import requests
import json
import math
import time
#Base URL for looking-up release-groups on musicbrainz.org
root_URL = 'http://musicbrainz.org/ws/2/'
#Parameters to run an example
offset = 10
limit = 1
MBID = '65f4f0c5-ef9e-490c-aee3-909e7ae6b2ab'
def collect_data(MBID, root_URL):
'''
Description: Auxiliar function to collect data from the MusicBrainz API
Arguments:
MBID - MusicBrainz Identity of some artist.
root_URL - MusicBrainz root_URL for requests
Returns:
decoded_output - dictionary file containing all the information about the release-groups
of type album of the requested artist
'''
#Joins paths. Note: Release-groups can be filtered by type.
URL_complete = root_URL + 'release-group?artist=' + MBID + '&type=album' + '&fmt=json'
#Creates a requests object and sends a GET request
request = requests.get(URL_complete)
assert request.status_code == 200
output = request.content #bits file
decoded_output = json.loads(output) #dict file
return decoded_output
def collect_releases(release_group_id, root_URL, delay = 1):
'''
Description: Auxiliar function to collect data from the MusicBrainz API
Arguments:
release_group_id - ID of the release-group whose number of releases is to be extracted
root_URL - MusicBrainz root_URL for requests
Returns:
releases_count - integer containing the number of releases of the release-group
'''
URL_complete = root_URL + 'release-group/' + release_group_id + '?inc=releases' + '&fmt=json'
#Creates a requests object and sends a GET request
request = requests.get(URL_complete)
#Parses the content of the request to a dictionary
output = request.content
decoded_output = json.loads(output)
#Time delay to not exceed MusicBrainz request rate limit
time.sleep(delay)
releases_count = 0
if 'releases' in decoded_output:
releases_count = len(decoded_output['releases'])
else:
print(decoded_output)
#raise ValueError(decoded_output)
return releases_count
def paginate(store_albums, offset, limit = 50):
'''
Description: Auxiliar function to paginate results
Arguments:
store_albums - Dictionary containing information about each release-group
offset - Integer. Corresponds to starting album to show.
limit - Integer. Default to 50. Maximum number of albums to show per page
Returns:
albums_paginated - Paginated albums according to specified limit and offset
'''
#Restricts limit to 150
if limit > 150:
limit = 150
if offset > len(store_albums['albums']):
raise ValueError('Offset is greater than number of albums')
#Apply offset
albums_offset = store_albums['albums'][offset:]
#Count pages
pages = math.ceil(len(albums_offset) / limit)
albums_limited = []
if len(albums_offset) > limit:
for i in range(pages):
albums_limited.append(albums_offset[i * limit : (i+1) * limit])
else:
albums_limited = albums_offset
albums_paginated = {'albums' : None}
albums_paginated['albums'] = albums_limited
return albums_paginated
def post(MBID, offset, limit, delay = 1):
#Calls the auxiliar function 'collect_data' that retrieves the JSON file from MusicBrainz API
json_file = collect_data(MBID, root_URL)
#Creates list and dictionary for storing the information about each release-group
album_details_list = []
album_details = {"id": None, "title": None, "year": None, "release_count": None}
#Loops through all release-groups in the JSON file
for item in json_file['release-groups']:
album_details["id"] = item["id"]
album_details["title"] = item["title"]
album_details["year"] = item["first-release-date"].split("-")[0]
album_details["release_count"] = collect_releases(item["id"], root_URL, delay)
album_details_list.append(album_details.copy())
#Creates dictionary with all the albums of the artist
store_albums = {"albums": None}
store_albums["albums"] = album_details_list
#Paginates the dictionary
stored_paginated_albums = paginate(store_albums, offset , limit)
#Returns JSON typed file containing the different albums arranged according to offset&limit
return json.dumps(stored_paginated_albums)
#Runs the program and prints the JSON output as specified in the wording of the exercise
print(post(MBID, offset, limit, delay = 1))