Я хочу использовать torch.nn.Embedding
. Я следовал за кодами в документации команды встраивания.
вот код:
# an Embedding module containing 10 tensors of size 3
embedding = nn.Embedding(10, 3)
# a batch of 2 samples of 4 indices each
input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
embedding(input)
В документации сказано, что вы получите этот вывод:
tensor([[[-0.0251, -1.6902, 0.7172],
[-0.6431, 0.0748, 0.6969],
[ 1.4970, 1.3448, -0.9685],
[-0.3677, -2.7265, -0.1685]],
[[ 1.4970, 1.3448, -0.9685],
[ 0.4362, -0.4004, 0.9400],
[-0.6431, 0.0748, 0.6969],
[ 0.9124, -2.3616, 1.1151]]])
но я не получаю этот вывод. вместо этого я получаю эту ошибку:
Traceback (most recent call last):
File "/home/mahsa/PycharmProjects/PyTorch_env_project/PyTorchZeroToAll-master/temporary.py", line 12, in <module>
embedding(input)
File "/home/mahsa/anaconda3/envs/pytorch_env/lib/python3.5/site-packages/torch/nn/modules/module.py", line 224, in __call__
result = self.forward(*input, **kwargs)
File "/home/mahsa/anaconda3/envs/pytorch_env/lib/python3.5/site-packages/torch/nn/modules/sparse.py", line 94, in forward
self.scale_grad_by_freq, self.sparse
RuntimeError: save_for_backward can only save input or output tensors, but argument 0 doesn't satisfy this condition
Кто-нибудь может подсказать мне об этой ошибке? а про работу torch.nn.Embedding
?