В данный момент я пытаюсь построить автоэнкодер для данных временных рядов в тензорном потоке. У меня есть почти 500 дней данных, где каждый день имеет 24 точки данных. Поскольку это моя первая попытка, моя архитектура очень проста. После моего ввода размера 24
скрытые слои имеют размер: 10; 3; 10
с выводом снова 24
. Я нормализовал данные (точки данных находятся в диапазоне [-0.5; 0.5]
), использую функцию активации сигмовидной кишки и RMSPropOptimizer.
После тренировки (функция потери на рисунке) выходные данные одинаковы для всех временных данных, которые я передаю в сеть. Кто-то знает, в чем причина? Возможно ли, что мой набор данных является проблемой (код ниже)?
class TimeDataset:
def __init__(self,data):
self._index_in_epoch = 0
self._epochs_completed = 0
self._data = data
self._num_examples = data.shape[0]
pass
@property
def data(self):
return self._data
def next_batch(self, batch_size, shuffle=True):
start = self._index_in_epoch
# first call
if start == 0 and self._epochs_completed == 0:
idx = np.arange(0, self._num_examples) # get all possible indexes
np.random.shuffle(idx) # shuffle indexe
self._data = self.data[idx] # get list of `num` random samples
if start + batch_size > self._num_examples:
# not enough samples left -> go to the next batch
self._epochs_completed += 1
rest_num_examples = self._num_examples - start
data_rest_part = self.data[start:self._num_examples]
idx0 = np.arange(0, self._num_examples) # get all possible indexes
np.random.shuffle(idx0) # shuffle indexes
self._data = self.data[idx0] # get list of `num` random samples
start = 0
self._index_in_epoch = batch_size - rest_num_examples #avoid the case where the #sample != integar times of batch_size
end = self._index_in_epoch
data_new_part = self._data[start:end]
return np.concatenate((data_rest_part, data_new_part), axis=0)
else:
# get next batch
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._data[start:end]
* edit: вот несколько примеров вывода (красный оригинал, синий реконструированный):
** edit: Я только что видел пример с авто-кодером с более сложной функцией luss, чем у меня. Кто-то знает, достаточно ли функции потерь self.loss = tf.reduce_mean(tf.pow(self.X - self.decoded, 2))
?
*** редактировать: еще немного кода, чтобы описать мое обучение
Это мой класс автоэнкодера:
class AutoEncoder():
def __init__(self):
# Training Parameters
self.learning_rate = 0.005
self.alpha = 0.5
# Network Parameters
self.num_input = 24 # one day as input
self.num_hidden_1 = 10 # 2nd layer num features
self.num_hidden_2 = 3 # 2nd layer num features (the latent dim)
self.X = tf.placeholder("float", [None, self.num_input])
self.weights = {
'encoder_h1': tf.Variable(tf.random_normal([self.num_input, self.num_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([self.num_hidden_1, self.num_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([self.num_hidden_2, self.num_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([self.num_hidden_1, self.num_input])),
}
self.biases = {
'encoder_b1': tf.Variable(tf.random_normal([self.num_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([self.num_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([self.num_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([self.num_input])),
}
self.encoded = self.encoder(self.X)
self.decoded = self.decoder(self.encoded)
# Define loss and optimizer, minimize the squared error
self.loss = tf.reduce_mean(tf.pow(self.X - self.decoded, 2))
self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss)
def encoder(self, x):
# sigmoid, tanh, relu
en_layer_1 = tf.nn.sigmoid (tf.add(tf.matmul(x, self.weights['encoder_h1']),
self.biases['encoder_b1']))
en_layer_2 = tf.nn.sigmoid (tf.add(tf.matmul(en_layer_1, self.weights['encoder_h2']),
self.biases['encoder_b2']))
return en_layer_2
def decoder(self, x):
de_layer_1 = tf.nn.sigmoid (tf.add(tf.matmul(x, self.weights['decoder_h1']),
self.biases['decoder_b1']))
de_layer_2 = tf.nn.sigmoid (tf.add(tf.matmul(de_layer_1, self.weights['decoder_h2']),
self.biases['decoder_b2']))
return de_layer_2
и вот как я тренирую свою сеть (входные данные имеют форму (число_дней, 24)):
model = autoencoder.AutoEncoder()
num_epochs = 3
batch_size = 50
num_batches = 300
display_batch = 50
examples_to_show = 16
loss_values = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#training
for e in range(1, num_epochs+1):
print('starting epoch {}'.format(e))
for b in range(num_batches):
# get next batch of data
batch_x = dataset.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
l = sess.run([model.loss], feed_dict={model.X: batch_x})
sess.run(model.optimizer, feed_dict={model.X: batch_x})
# Display logs
if b % display_batch == 0:
print('Epoch {}: Batch ({}) Loss: {}'.format(e, b, l))
loss_values.append(l)
# testing
test_data = dataset.next_batch(batch_size)
decoded_test_data = sess.run(model.decoded, feed_dict={model.X: test_data})