У меня есть три файла, каждый размером около 3 ГБ, которые содержат информацию о картировании генома, например:
#RefName Pos Coverage
BGC0000001_59320bp 0 0
BGC0000001_59320bp 1 0
BGC0000001_59320bp 2 0
BGC0000001_59320bp 3 0
BGC0000001_59320bp 4 0
BGC0000001_59320bp 5 0
BGC0000001_59320bp 6 0
BGC0000001_59320bp 7 0
BGC0000001_59320bp 8 0
BGC0000001_59320bp 9 0
BGC0000001_59320bp 10 0
BGC0000001_59320bp 11 0
BGC0000001_59320bp 12 0
BGC0000001_59320bp 13 0
BGC0000001_59320bp 14 0
BGC0000001_59320bp 15 0
BGC0000001_59320bp 16 0
BGC0000001_59320bp 17 0
BGC0000001_59320bp 18 0
BGC0000001_59320bp 19 0
BGC0000001_59320bp 20 0
BGC0000001_59320bp 21 0
BGC0000001_59320bp 22 0
BGC0000001_59320bp 23 0
BGC0000001_59320bp 24 0
BGC0000001_59320bp 25 0
BGC0000001_59320bp 26 0
BGC0000001_59320bp 27 0
BGC0000001_59320bp 28 0
BGC0000001_59320bp 29 0
BGC0000001_59320bp 30 0
BGC0000001_59320bp 31 0
BGC0000001_59320bp 32 0
BGC0000001_59320bp 33 0
BGC0000001_59320bp 34 0
BGC0000001_59320bp 35 0
.
.
.
.
Первый столбец = имя гена; 2-й столбец = положение или локусы каждого основания гена; 3-й столбец = охват каждой базы или позиции.
Например:
первый ген 'BGC0000001_59320bp' имеет длину 59320 б.п., поэтому для этого гена будет 59320 строк, а затем появится следующий ген.
Я хотел бы создать кластерную тепловую карту следующим образом:
Ось Y - это каждый ген, такой как BGC0000001, BGC0000002, ....
Ось х - это положение гена в виде бина. Поскольку каждый ген имеет разную длину, я буду складывать их в одинаковое количество бинов, скажем, в 100 бинов. Это делает ось х стать bin1, bin2, bin3, ..., bin100. Например, BGC0000001 = 59320 п.н., BGC0000002 = 10000 б.п., я сгруппирую каждый ген в 100 бинов, поэтому для BGC0000001, bin1 = 593 б.п., bin2 = 593 б.п., ... bin100 = 595 б.п.; для BGC0000002: bin1 = 100 б.п., bin2 = 100 б.п. ... bin100 = 100 б.п. Я помещу сумму покрытия в каждую ячейку как значения для построения графика. Например: для BGC0000001: bin1 = сумма (покрытие первых 593 б.п.), bin2 = сумма (покрытие 2-х 593 б.п.) ...
Наконец, я буду использовать объединенные данные для построения кластеризованной тепловой карты. У меня есть три образца файлов, чтобы сделать три участка. Поскольку данные огромны, я пробую приведенный ниже код, который на самом деле не чист, и это занимает вечность:
import pandas as pd
import matplotlib.pyplot as plt
import sys
import os
from scipy.stats import binned_statistic
import seaborn as sns
def getFiles(filePath):
coverageFile = []
for file in os.listdir(filePath):
if file.endswith(".coverage"):
coverageFile.append(file)
else:
pass
print(coverageFile)
return coverageFile
def binCov(df,name,nBins):
genomeMap = df[df.node == name].coverage
bin_sums, bin_edges, binnumber = binned_statistic (range(len(genomeMap)), genomeMap,
statistic = 'sum', bins = nBins)
bin_width = (bin_edges[1] - bin_edges[0])
bin_centers = bin_edges[1:] - bin_width*0.5
df1 = pd.DataFrame({'covSum':bin_sums})
df1.insert(1,'gene',name)
df1.insert(2,'loci',range(1, len(df1)+1))
df1.insert(2,'covNorm',df1.covSum)
df1.loc[df1.covSum >5000, 'covNorm'] = 5000
df1.drop('covSum', axis =1, inplace = True)
return df1
files = getFiles(os.getcwd())
df_nac = pd.read_csv(files[0], sep = '\t')
df_nac.columns = ['node', 'loci', 'coverage']
df_ks = pd.read_csv(files[1], sep = '\t')
df_ks.columns = ['node', 'loci', 'coverage']
df_meta = pd.read_csv(files[2], sep = '\t')
df_meta.columns = ['node', 'loci', 'coverage']
cluster_names = df_nac.node.tolist()
cluster_nac = {}
cluster_ks = {}
cluster_meta = {}
for name in cluster_names:
cluster_nac[name] = binCov(df_nac, name, 100)
cluster_ks[name] = binCov(df_ks, name, 100)
cluster_meta[name] = binCov(df_meta, name, 100)
cluster_nac_all = pd.concat(cluster_nac.values(), ignore_index=True)
cluster_ks_all = pd.concat(cluster_ks.values(), ignore_index=True)
cluster_meta_all = pd.concat(cluster_meta.values(), ignore_index=True)
nac_p = cluster_nac_all.pivot("gene", "loci", "covNorm")
ks_p = cluster_ks_all.pivot("gene", "loci", "covNorm")
meta_p = cluster_meta_all.pivot("gene", "loci", "covNorm")
sns.set_style("darkgrid")
plt.figure(figsize = (5,10))
# cmap="Greens", , linecolor='yellow', alpha = 0.9,cmap="YlGnBu"
g1 = sns.heatmap(meta_p, xticklabels=True, yticklabels=True, cmap="BuPu", cbar = False)
g1.set_xlabel('Bases (binned)')
g1.set_ylabel('')
g1.set_xticks([])
g1.set_yticks([])
plt.savefig('meta_sumCov.png',dpi = 300, bbox_inches = 'tight')
plt.figure(figsize = (5,10))
# cmap="Greens", , linecolor='yellow', alpha = 0.9,cmap="YlGnBu"
g2 = sns.heatmap(nac_p, xticklabels=True, yticklabels=True, cmap="BuPu", cbar = False)
g2.set_xlabel('Bases (binned)')
g2.set_ylabel('')
g2.set_xticks([])
g2.set_yticks([])
plt.savefig('nac_sumCov.png',dpi = 300, bbox_inches = 'tight')
plt.figure(figsize = (5,10))
# cmap="Greens", , linecolor='yellow', alpha = 0.9,cmap="YlGnBu"
g3 = sns.heatmap(ks_p, xticklabels=True, yticklabels=True, cmap="BuPu",
cbar_kws = dict(use_gridspec=False,location="right"))
g3.set_xlabel('Bases (binned)')
g3.set_ylabel('')
g3.set_xticks([])
g3.set_yticks([])
plt.savefig('ks_sumCov.png',dpi = 300, bbox_inches = 'tight')
Я позволил ему работать в течение 10 часов и продолжал работать, хотя это не показывало никакой ошибки.
Я не думаю, что Pandas хорош для больших файлов, но я не знаком с другими более быстрыми инструментами. Пожалуйста, помогите мне.
Спасибо.