Я хочу решить эту систему дифференциальных уравнений 3-3, используя odeint, и получаю эту ошибку:
Traceback (most recent call last):
File "/home/spyros/Documents/Spyros/Diplwmatiki/ROS/Serial connection/Dynamic_problem.py", line 81, in <module>
u = odeint(subsystem2,u0,t)
File "/usr/local/lib/python2.7/dist-packages/scipy/integrate/odepack.py", line 233, in odeint
int(bool(tfirst)))
RuntimeError: The array return by func must be one-dimensional, but got ndim=2.
Я читаю эти похожие темы:
Как решить систему дифференциальных уравнений с помощью scipy.odeint
ошибка с odeint (RuntimeError: массив, возвращаемый функцией, должен быть одномерным, но получил ndim = 2.)
Ошибка оптимизации Scipy
но я не нашел, как решения могут быть реализованы в моей проблеме.
Как это возможно, что возвращаемый массив имеет размерность = 2. У меня есть 3 переменные на входе функции, 3 дифференциальных уравнения и те же уравнения в возвращаемом массиве. Как я могу решить эту ошибку? Заранее спасибо.
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
added_mass_x = 0.03 # kg
added_mass_y = 0.04
mb = 0.3 # kg
m1 = mb-added_mass_x
m2 = mb-added_mass_y
l1 = 0.07 # m
l2 = 0.05 # m
J = 0.00050797 # kgm^2
Sa = 0.0110 # m^2
Cd = 2.44
Cl = 3.41
Kd = 0.000655 # kgm^2
r = 1000 # kg/m^3
c1 = 0.5*r*Sa*Cd
c2 = 0.5*r*Sa*Cl
c3 = 0.5*mb*(l1**2)
c4 = Kd/J
c5 = (1/(2*J))*(l1**2)*mb*l2
c6 = (1/(3*J))*(l1**3)*mb
theta_0 = 10*(np.pi/180) # rad
theta_A = 20*(np.pi/180) # rad
f = 2 # Hz
t = np.linspace(0,100,8000) # s
omega = 2*np.pi*f # rad/s
theta = theta_0 + theta_A*np.sin(omega*t) # rad
theta_deg = (theta*180)/np.pi # deg
thetadotdot = -(omega**2)*theta_A*np.sin(omega*t) # rad/s^2
def subsystem2(u,t):
vcx = u[0]
vcy = u[1]
wz = u[2]
vcxdot = (m2/m1)*vcy*wz-(c1/m1)*vcx*np.sqrt((vcx**2)+(vcy**2))+(c2/m1)*vcy*np.sqrt((vcx**2)+(vcy**2))*np.arctan2(vcy,vcx)-(c3/m1)*thetadotdot*np.sin(theta)
vcydot = -(m1/m2)*vcx*wz-(c1/m2)*vcy*np.sqrt((vcx**2)+(vcy**2))-(c2/m2)*vcx*np.sqrt((vcx**2)+(vcy**2))*np.arctan2(vcy,vcx)+(c3/m2)*thetadotdot*np.cos(theta)
wzdot = ((m1-m2)/J)*vcx*vcy-c4*wz*wz*np.sign(wz)-c5*thetadotdot*np.cos(theta)-c6*thetadotdot
return [vcxdot,vcydot,wzdot]
# arxikes synthikes
vcx_0 = 0
vcy_0 = 0
wz_0 = 0
u0 = [vcx_0,vcy_0,wz_0]
# epilysi systimatos diaforikwn
u = odeint(subsystem2,u0,t,tfirst=False)
vcx = u[:,0]
vcy = u[:,1]
wz = u[:,2]