Я пытался реализовать нейронную сеть на python, которая использует обратное распространение и продолжает получать вышеуказанную ошибку. Как я могу пойти на устранение этого. Код выполняется в течение одной эпохи без вычисления ошибки в системе, следовательно, он не может распространять ошибку в обратном направлении по сети
import numpy as np
X = [0.4, 0.7]
y = [0.1]
class Neural_Network(object):
def __init__(self):
#parameters
self.inputSize = 2
self.outputSize = 1
self.hiddenSize = 2
#weights
self.W1 = [[0.1, 0.4],
[0.2, -0.2]] # (2x2) weight matrix from input to hidden layer
self.W2 = np.array([0.2, -0.5])[np.newaxis] # (2x1) weight matrix from hidden to output layer
def forward(self, X):
#forward propagation through our network
self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights
self.z2 = self.sigmoid(self.z) # activation function
self.z3 = np.dot(self.z2, self.W2.T) # dot product of hidden layer (z2) and second set of 3x1 weights
o = self.sigmoid(self.z3) # final activation function
return o
def sigmoid(self, s):
# activation function
return 1/(1+np.exp(-s))
def sigmoidPrime(self, s):
#derivative of sigmoid
return s * (1 - s)
def backward(self, X, y, o):
# backward propgate through the network
self.o_error = y - o # error in output
self.o_delta = self.o_error*self.sigmoidPrime(o) # applying derivative of sigmoid to error
self.z2_error = self.o_delta.dot(self.W2) # z2 error: how much our hidden layer weights contributed to output error
self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2) # applying derivative of sigmoid to z2 error
self.W1 += X.T.dot(self.z2_delta) # adjusting first set (input --> hidden) weights
self.W2 += self.z2.T.dot(self.o_delta) # adjusting second set (hidden --> output) weights
def train (self, X, y):
o = self.forward(X)
self.backward(X, y, o)
NN = Neural_Network()
for i in xrange(1000): # trains the NN 1,000 times
print "Input: \n" + str(X)
print "Actual Output: \n" + str(y)
print "Predicted Output: \n" + str(NN.forward(X))
print "Loss: \n" + str(np.mean(np.square(y - NN.forward(X)))) # mean sum squared loss
print "\n"
NN.train(X, y)
Я получаю ошибку
File "C:/Users/Aaa/AppData/Local/Temp/abc.py", line 43, in backward
self.W1 += X.T.dot(self.z2_delta) # adjusting first set (input --> hidden) weights
AttributeError: 'list' object has no attribute 'T'