Это можно сделать с помощью сложности памяти O (Sqrt (N)) и сложности процессора O (N * Log (Log (N))) с оптимизированным оконным ситом эратосфена, как это реализовано в примере кода ниже.
Так как язык не был указан и я не знаю Python, я реализовал его на VB.net, однако я могу преобразовать его в C #, если вам это нужно.
Imports System.Math
Public Class TotientSerialCalculator
'Implements an extremely efficient Serial Totient(phi) calculator '
' This implements an optimized windowed Sieve of Eratosthenes. The'
' window size is set at Sqrt(N) both to optimize collecting and '
' applying all of the Primes below Sqrt(N), and to minimize '
' window-turning overhead. '
' '
' CPU complexity is O( N * Log(Log(N)) ), which is virtually linear.'
' '
' MEM Complexity is O( Sqrt(N) ). '
' '
' This is probalby the ideal combination, as any attempt to further '
'reduce memory will almost certainly result in disproportionate increases'
'in CPU complexity, and vice-versa. '
Structure NumberFactors
Dim UnFactored As Long 'the part of the number that still needs to be factored'
Dim Phi As Long 'the totient value progressively calculated'
' (equals total numbers less than N that are CoPrime to N)'
'MEM = 8 bytes each'
End Structure
Private ReportInterval As Long
Private PrevLast As Long 'the last value in the previous window'
Private FirstValue As Long 'the first value in this windows range'
Private WindowSize As Long
Private LastValue As Long 'the last value in this windows range'
Private NextFirst As Long 'the first value in the next window'
'Array that stores all of the NumberFactors in the current window.'
' this is the primary memory consumption for the class and it'
' is 16 * Sqrt(N) Bytes, which is O(Sqrt(N)).'
Public Numbers() As NumberFactors
' For N=10^12 (1 trilion), this will be 16MB, which should be bearable anywhere.'
'(note that the Primes() array is a secondary memory consumer'
' at O(pi(Sqrt(N)), which will be within 10x of O(Sqrt(N)))'
Public Event EmitTotientPair(ByVal k As Long, ByVal Phi As Long)
'===== The Routine To Call: ========================'
Public Sub EmitTotientPairsToN(ByVal N As Long)
'Routine to Emit Totient pairs {k, Phi(k)} for k = 1 to N'
' 2009-07-14, RBarryYoung, Created.'
Dim i As Long
Dim k As Long 'the current number being factored'
Dim p As Long 'the current prime factor'
'Establish the Window frame:'
' note: WindowSize is the critical value that controls both memory'
' usage and CPU consumption and must be SQRT(N) for it to work optimally.'
WindowSize = Ceiling(Sqrt(CDbl(N)))
ReDim Numbers(0 To WindowSize - 1)
'Initialize the first window:'
MapWindow(1)
Dim IsFirstWindow As Boolean = True
'adjust this to control how often results are show'
ReportInterval = N / 100
'Allocate the primes array to hold the primes list:'
' Only primes <= SQRT(N) are needed for factoring'
' PiMax(X) is a Max estimate of the number of primes <= X'
Dim Primes() As Long, PrimeIndex As Long, NextPrime As Long
'init the primes list and its pointers'
ReDim Primes(0 To PiMax(WindowSize) - 1)
Primes(0) = 2 '"prime" the primes list with the first prime'
NextPrime = 1
'Map (and Remap) the window with Sqrt(N) numbers, Sqrt(N) times to'
' sequentially map all of the numbers <= N.'
Do
'Sieve the primes across the current window'
PrimeIndex = 0
'note: cant use enumerator for the loop below because NextPrime'
' changes during the first window as new primes <= SQRT(N) are accumulated'
Do While PrimeIndex < NextPrime
'get the next prime in the list'
p = Primes(PrimeIndex)
'find the first multiple of (p) in the current window range'
k = PrevLast + p - (PrevLast Mod p)
Do
With Numbers(k - FirstValue)
.UnFactored = .UnFactored \ p 'always works the first time'
.Phi = .Phi * (p - 1) 'Phi = PRODUCT( (Pi-1)*Pi^(Ei-1) )'
'The loop test that follows is probably the central CPU overhead'
' I believe that it is O(N*Log(Log(N)), which is virtually O(N)'
' ( for instance at N = 10^12, Log(Log(N)) = 3.3 )'
Do While (.UnFactored Mod p) = 0
.UnFactored = .UnFactored \ p
.Phi = .Phi * p
Loop
End With
'skip ahead to the next multiple of p: '
'(this is what makes it so fast, never have to try prime factors that dont apply)'
k += p
'repeat until we step out of the current window:'
Loop While k < NextFirst
'if this is the first window, then scan ahead for primes'
If IsFirstWindow Then
For i = Primes(NextPrime - 1) + 1 To p ^ 2 - 1 'the range of possible new primes'
'Dont go beyond the first window'
If i >= WindowSize Then Exit For
If Numbers(i - FirstValue).UnFactored = i Then
'this is a prime less than SQRT(N), so add it to the list.'
Primes(NextPrime) = i
NextPrime += 1
End If
Next
End If
PrimeIndex += 1 'move to the next prime'
Loop
'Now Finish & Emit each one'
For k = FirstValue To LastValue
With Numbers(k - FirstValue)
'Primes larger than Sqrt(N) will not be finished: '
If .UnFactored > 1 Then
'Not done factoring, must be an large prime factor remaining: '
.Phi = .Phi * (.UnFactored - 1)
.UnFactored = 1
End If
'Emit the value pair: (k, Phi(k)) '
EmitPhi(k, .Phi)
End With
Next
're-Map to the next window '
IsFirstWindow = False
MapWindow(NextFirst)
Loop While FirstValue <= N
End Sub
Sub EmitPhi(ByVal k As Long, ByVal Phi As Long)
'just a placeholder for now, that raises an event to the display form'
' periodically for reporting purposes. Change this to do the actual'
' emitting.'
If (k Mod ReportInterval) = 0 Then
RaiseEvent EmitTotientPair(k, Phi)
End If
End Sub
Public Sub MapWindow(ByVal FirstVal As Long)
'Efficiently reset the window so that we do not have to re-allocate it.'
'init all of the boundary values'
FirstValue = FirstVal
PrevLast = FirstValue - 1
NextFirst = FirstValue + WindowSize
LastValue = NextFirst - 1
'Initialize the Numbers prime factor arrays'
Dim i As Long
For i = 0 To WindowSize - 1
With Numbers(i)
.UnFactored = i + FirstValue 'initially equal to the number itself'
.Phi = 1 'starts at mulplicative identity(1)'
End With
Next
End Sub
Function PiMax(ByVal x As Long) As Long
'estimate of pi(n) == {primes <= (n)} that is never less'
' than the actual number of primes. (from P. Dusart, 1999)'
Return (x / Log(x)) * (1.0 + 1.2762 / Log(x))
End Function
End Class
Обратите внимание, что в O (N * Log (Log (N))) эта подпрограмма учитывает в среднем каждое число в O (Log (Log (N))), что намного, намного быстрее, чем самая быстрая разложенность N алгоритмы, размещенные в некоторых ответах здесь. Фактически, при N = 10 ^ 12 это 2400 раз быстрее!
Я протестировал эту процедуру на моем 2-ГГц ноутбуке Intel Core 2, и он вычисляет более 3 000 000 значений Phi () в секунду. При такой скорости вам потребуется около 4 дней, чтобы вычислить 10 ^ 12 значений. Я также проверил его на правильность до 100 000 000 без каких-либо ошибок. Он основан на 64-битных целых числах, поэтому все до 2 ^ 63 (10 ^ 19) должно быть точным (хотя и слишком медленным для всех).
У меня также есть Visual Studio WinForm (также VB.net) для его запуска / тестирования, который я могу предоставить, если хотите.
Дайте мне знать, если у вас есть какие-либо вопросы.
В соответствии с просьбой в комментариях ниже я добавил версию кода на C #. Однако, поскольку я в настоящее время нахожусь в центре некоторых других проектов, у меня нет времени самостоятельно конвертировать его, поэтому я использовал один из онлайн-сайтов конвертации VB в C # (http://www.carlosag.net/tools/codetranslator/). Так что имейте в виду, что это было автоконвертирован, и я еще не успел проверить или проверить это сам.
using System.Math;
public class TotientSerialCalculator {
// Implements an extremely efficient Serial Totient(phi) calculator '
// This implements an optimized windowed Sieve of Eratosthenes. The'
// window size is set at Sqrt(N) both to optimize collecting and '
// applying all of the Primes below Sqrt(N), and to minimize '
// window-turning overhead. '
// '
// CPU complexity is O( N * Log(Log(N)) ), which is virtually linear.'
// '
// MEM Complexity is O( Sqrt(N) ). '
// '
// This is probalby the ideal combination, as any attempt to further '
// reduce memory will almost certainly result in disproportionate increases'
// in CPU complexity, and vice-versa. '
struct NumberFactors {
private long UnFactored; // the part of the number that still needs to be factored'
private long Phi;
}
private long ReportInterval;
private long PrevLast; // the last value in the previous window'
private long FirstValue; // the first value in this windows range'
private long WindowSize;
private long LastValue; // the last value in this windows range'
private long NextFirst; // the first value in the next window'
// Array that stores all of the NumberFactors in the current window.'
// this is the primary memory consumption for the class and it'
// is 16 * Sqrt(N) Bytes, which is O(Sqrt(N)).'
public NumberFactors[] Numbers;
// For N=10^12 (1 trilion), this will be 16MB, which should be bearable anywhere.'
// (note that the Primes() array is a secondary memory consumer'
// at O(pi(Sqrt(N)), which will be within 10x of O(Sqrt(N)))'
//NOTE: this part looks like it did not convert correctly
public event EventHandler EmitTotientPair;
private long k;
private long Phi;
// ===== The Routine To Call: ========================'
public void EmitTotientPairsToN(long N) {
// Routine to Emit Totient pairs {k, Phi(k)} for k = 1 to N'
// 2009-07-14, RBarryYoung, Created.'
long i;
long k;
// the current number being factored'
long p;
// the current prime factor'
// Establish the Window frame:'
// note: WindowSize is the critical value that controls both memory'
// usage and CPU consumption and must be SQRT(N) for it to work optimally.'
WindowSize = Ceiling(Sqrt(double.Parse(N)));
object Numbers;
this.MapWindow(1);
bool IsFirstWindow = true;
ReportInterval = (N / 100);
// Allocate the primes array to hold the primes list:'
// Only primes <= SQRT(N) are needed for factoring'
// PiMax(X) is a Max estimate of the number of primes <= X'
long[] Primes;
long PrimeIndex;
long NextPrime;
// init the primes list and its pointers'
object Primes;
-1;
Primes[0] = 2;
// "prime" the primes list with the first prime'
NextPrime = 1;
// Map (and Remap) the window with Sqrt(N) numbers, Sqrt(N) times to'
// sequentially map all of the numbers <= N.'
for (
; (FirstValue <= N);
) {
PrimeIndex = 0;
// note: cant use enumerator for the loop below because NextPrime'
// changes during the first window as new primes <= SQRT(N) are accumulated'
while ((PrimeIndex < NextPrime)) {
// get the next prime in the list'
p = Primes[PrimeIndex];
// find the first multiple of (p) in the current window range'
k = (PrevLast
+ (p
- (PrevLast % p)));
for (
; (k < NextFirst);
) {
// With...
UnFactored;
p;
// always works the first time'
(Phi
* (p - 1));
while (// TODO: Warning!!!! NULL EXPRESSION DETECTED...
) {
(UnFactored % p);
UnFactored;
(Phi * p);
}
// skip ahead to the next multiple of p: '
// (this is what makes it so fast, never have to try prime factors that dont apply)'
k = (k + p);
// repeat until we step out of the current window:'
}
// if this is the first window, then scan ahead for primes'
if (IsFirstWindow) {
for (i = (Primes[(NextPrime - 1)] + 1); (i
<= (p | (2 - 1))); i++) {
// the range of possible new primes'
// TODO: Warning!!! The operator should be an XOR ^ instead of an OR, but not available in CodeDOM
// Dont go beyond the first window'
if ((i >= WindowSize)) {
break;
}
if ((Numbers[(i - FirstValue)].UnFactored == i)) {
// this is a prime less than SQRT(N), so add it to the list.'
Primes[NextPrime] = i;
NextPrime++;
}
}
}
PrimeIndex++;
// move to the next prime'
}
// Now Finish & Emit each one'
for (k = FirstValue; (k <= LastValue); k++) {
// With...
// Primes larger than Sqrt(N) will not be finished: '
if ((Numbers[(k - FirstValue)].UnFactored > 1)) {
// Not done factoring, must be an large prime factor remaining: '
(Numbers[(k - FirstValue)].Phi * (Numbers[(k - FirstValue)].UnFactored - 1).UnFactored) = 1;
Numbers[(k - FirstValue)].Phi = 1;
}
// Emit the value pair: (k, Phi(k)) '
this.EmitPhi(k, Numbers[(k - FirstValue)].Phi);
}
// re-Map to the next window '
IsFirstWindow = false;
this.MapWindow(NextFirst);
}
}
void EmitPhi(long k, long Phi) {
// just a placeholder for now, that raises an event to the display form'
// periodically for reporting purposes. Change this to do the actual'
// emitting.'
if (((k % ReportInterval)
== 0)) {
EmitTotientPair(k, Phi);
}
}
public void MapWindow(long FirstVal) {
// Efficiently reset the window so that we do not have to re-allocate it.'
// init all of the boundary values'
FirstValue = FirstVal;
PrevLast = (FirstValue - 1);
NextFirst = (FirstValue + WindowSize);
LastValue = (NextFirst - 1);
// Initialize the Numbers prime factor arrays'
long i;
for (i = 0; (i
<= (WindowSize - 1)); i++) {
// With...
// initially equal to the number itself'
Phi = 1;
// starts at mulplicative identity(1)'
}
}
long PiMax(long x) {
// estimate of pi(n) == {primes <= (n)} that is never less'
// than the actual number of primes. (from P. Dusart, 1999)'
return ((x / Log(x)) * (1 + (1.2762 / Log(x))));
}
}