Haskell - Невозможно определить функцию, подобную монаде, используя определение, подобное монаде - PullRequest
0 голосов
/ 06 сентября 2018

Я пытаюсь понять концепцию Monad, пытаясь написать общую версию функций, которые могут включать побочные эффекты для регистрации, изменения состояния.

Вот что я придумал: (Коднемного длинная, но она показывает, как я подошел к пониманию монады - и этот подход может быть неправильным)

data Maybe' a = Nothing' | Just' a deriving Show

sqrt' :: (Floating a, Ord a) => a -> Maybe' a
sqrt' x = if x < 0 then Nothing' else Just' (sqrt x)


inv' :: (Floating a, Ord a) => a -> Maybe' a
inv' x = if x == 0 then Nothing' else Just' (1/x)

log' :: (Floating a, Ord a) => a -> Maybe' a
log' x = if x == 0 then Nothing' else Just' (log x)


sqrtInvLog' :: (Floating a, Ord a) => a -> Maybe' a
sqrtInvLog' x = case (sqrt' x) of
                 Nothing' -> Nothing'
                 (Just' y) -> case (inv' y) of
                               Nothing' -> Nothing'
                               (Just' z) -> log' z

-- Now attempt to simplify the nested case:
fMaybe' :: (Maybe' a) -> (a -> Maybe' b) -> Maybe' b
fMaybe' Nothing' _ = Nothing'
fMaybe' (Just' x) f = f x

-- using fMaybe':
sqrtInvLog'' :: (Floating a, Ord a) => a -> Maybe' a
sqrtInvLog'' x = (sqrt' x) `fMaybe'` (inv') `fMaybe'` (log')

-- now we can generalize the concept to any type, instead of just Maybe' by defining a Monad =>
class Monad' m where
 bind' :: m a -> (a -> m b) -> m b
 return' :: a -> m a

instance Monad' Maybe' where
 bind' Nothing' _ = Nothing'
 bind' (Just' x) f = f x
 return' x = Just' x

-- using Monad sqrtInvLog'' can be written as:
sqrtInvLog''' :: (Floating a, Ord a) => a -> Maybe' a
sqrtInvLog''' x = (sqrt' x) `bind'` (inv') `bind'` (log')

-- Further lets attempt to use this for state maintenence and logging, logging:
-- first attempt the specific version:
data ST a = ST (a, Maybe' a) deriving Show

sqrtSt :: (Floating a, Ord a)=> a -> a -> ST a
sqrtSt st x = let r = sqrt' x in case r of
                                  Nothing' -> ST (st, Nothing')
                                  (Just' y) -> ST (st+y, (Just' y))


invSt :: (Floating a, Ord a)=> a -> a -> ST a
invSt st x = let r = inv' x in case r of
                                  Nothing' -> ST (st, Nothing')
                                  (Just' y) -> ST (st+y, (Just' y))


logSt :: (Floating a, Ord a)=> a -> a -> ST a
logSt st x = let r = log' x in case r of
                                  Nothing' -> ST (st, Nothing')
                                  (Just' y) -> ST (st+y, (Just' y))

-- let us first define function which is similar to bind and manipulates the state and invokes the given function:
stBind :: (Floating a, Ord a) => ST a -> (a->a->ST a) -> ST a
stBind (ST (a, Nothing')) _ = ST (a, Nothing')
stBind (ST (s, (Just' y))) f = f s y

sqrtInvLogSt :: (Floating a, Ord a) => a -> a -> ST a
sqrtInvLogSt st x = (sqrtSt st x) `stBind` (invSt) `stBind` (logSt)

-- stBind does not fit the pattern of bind

-- Another version:

sqrtSt' :: (Floating a, Ord a)=> ST a -> ST a
sqrtSt' (ST (st, Nothing')) = ST (st, Nothing')
sqrtSt' (ST (st, (Just' x))) = let r = sqrt' x in case r of
                                                  Nothing' -> ST (st, Nothing')
                                                  (Just' y) -> ST (st+y, (Just' y))



invSt' :: (Floating a, Ord a)=> ST a -> ST a
invSt' (ST (st, Nothing')) = ST (st, Nothing')
invSt' (ST (st, (Just' x))) = let r = inv' x in case r of
                                                  Nothing' -> ST (st, Nothing')
                                                  (Just' y) -> ST (st+y, (Just' y))


logSt' :: (Floating a, Ord a)=> ST a -> ST a
logSt' (ST (st, Nothing')) = ST (st, Nothing')
logSt' (ST (st, (Just' x))) = let r = log' x in case r of
                                                  Nothing' -> ST (st, Nothing')
                                                  (Just' y) -> ST (st+y, (Just' y))

-- define stBind' here
stBind' :: (Floating a, Ord a) => ST a -> (ST a->ST a) -> ST a
stBind' (ST (a, Nothing')) _ = ST (a, Nothing')
stBind' stx f = f stx

sqrtInvLogSt' :: (Floating a, Ord a) => ST a->ST a
sqrtInvLogSt' stx = (sqrtSt' stx) `stBind'` (invSt') `stBind'` (logSt')

-- Even this does not fit the pattern of bind,

Функция stBind ', определенная в конце, не соответствует шаблону bind'.Как я могу придумать реализацию в этой ситуации, чтобы соответствовать сигнатуре оператора связывания?

1 Ответ

0 голосов
/ 06 сентября 2018

Опасаясь спойлеров, было бы интересно пиковаться при определении монады State, существовавшей до того, как все стало преобразованным:

newtype State s a = State { runState :: s -> (a, s) }

То есть: действие с состоянием с состоянием s, которое генерирует значение типа a, является функцией от старого состояния s до значения и нового состояния (a, s).

Начиная с правильного определения для State, вам будет легче разобраться с остальной частью вашей разработки.

...