Я делаю распознавание рукописных цифр с использованием Keras, и у меня есть два файла: Foregnet.py и train.py .
train.py обучает модель (если она еще не обучена) и сохраняет ее в каталоге, в противном случае она просто загрузит обученную модель из каталога, в котором она была сохранена, и напечатает Test Loss
и Test Accuracy
.
def getData():
(X_train, y_train), (X_test, y_test) = mnist.load_data()
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
X_train = X_train.reshape(X_train.shape[0], 784)
X_test = X_test.reshape(X_test.shape[0], 784)
# normalizing the data to help with the training
X_train /= 255
X_test /= 255
return X_train, y_train, X_test, y_test
def trainModel(X_train, y_train, X_test, y_test):
# training parameters
batch_size = 1
epochs = 10
# create model and add layers
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation = 'softmax'))
# compiling the sequential model
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
# training the model and saving metrics in history
history = model.fit(X_train, y_train,
batch_size=batch_size, epochs=epochs,
verbose=2,
validation_data=(X_test, y_test))
loss_and_metrics = model.evaluate(X_test, y_test, verbose=2)
print("Test Loss", loss_and_metrics[0])
print("Test Accuracy", loss_and_metrics[1])
# Save model structure and weights
model_json = model.to_json()
with open('model.json', 'w') as json_file:
json_file.write(model_json)
model.save_weights('mnist_model.h5')
return model
def loadModel():
json_file = open('model.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
model.load_weights("mnist_model.h5")
return model
X_train, y_train, X_test, y_test = getData()
if(not os.path.exists('mnist_model.h5')):
model = trainModel(X_train, y_train, X_test, y_test)
print('trained model')
print(model.summary())
else:
model = loadModel()
print('loaded model')
print(model.summary())
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
loss_and_metrics = model.evaluate(X_test, y_test, verbose=2)
print("Test Loss", loss_and_metrics[0])
print("Test Accuracy", loss_and_metrics[1])
Вот вывод (при условии, что модель была обучена ранее, и на этот раз модель будет просто загружена):
(«Испытательная потеря», 1,741784990310669)
(«Точность теста», 0,414)
realt.py , с другой стороны, предсказывает написанное от руки число:
def loadModel():
json_file = open('model.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
model.load_weights("mnist_model.h5")
return model
model = loadModel()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
(X_train, y_train), (X_test, y_test) = mnist.load_data()
y_test = to_categorical(y_test, num_classes=10)
X_test = X_test.reshape(X_test.shape[0], 28*28)
loss_and_metrics = model.evaluate(X_test, y_test, verbose=2)
print("Test Loss", loss_and_metrics[0])
print("Test Accuracy", loss_and_metrics[1])
В этом случае, к моему удивлению, получается следующий результат:
(«Испытательная потеря», 1,8380377866744995)
(«Точность теста», 0,8856)
Во втором файле я получаю Test Accuracy
0,88 (более чем вдвое больше, чем я получал раньше).
Кроме того, model.summery()
одинаково в обоих файлах:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 64) 50240
_________________________________________________________________
dense_2 (Dense) (None, 10) 650
=================================================================
Total params: 50,890
Trainable params: 50,890
Non-trainable params: 0
_________________________________________________________________
Я не могу понять причину этого поведения. Это нормально? Или я что-то упустил?