Нельзя избежать цикла, но его можно распараллелить, используя numba
's njit
:
from numba import njit, prange
@njit
def dynamic_cumsum(seq, index, max_value):
cumsum = []
running = 0
for i in prange(len(seq)):
if running > max_value:
cumsum.append([index[i], running])
running = 0
running += seq[i]
cumsum.append([index[-1], running])
return cumsum
Здесь требуется указатель, при условии, что он не является числовым / монотонно увеличивающимся.
%timeit foo(df, 5)
1.24 ms ± 41.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit dynamic_cumsum(df.iloc(axis=1)[0].values, df.index.values, 5)
77.2 µs ± 4.01 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Если индекс имеет тип Int64Index
, вы можете сократить его до:
@njit
def dynamic_cumsum2(seq, max_value):
cumsum = []
running = 0
for i in prange(len(seq)):
if running > max_value:
cumsum.append([i, running])
running = 0
running += seq[i]
cumsum.append([i, running])
return cumsum
lst = dynamic_cumsum2(df.iloc(axis=1)[0].values, 5)
pd.DataFrame(lst, columns=['A', 'B']).set_index('A')
B
A
3 10
7 8
9 4
%timeit foo(df, 5)
1.23 ms ± 30.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit dynamic_cumsum2(df.iloc(axis=1)[0].values, 5)
71.4 µs ± 1.4 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
njit
Представление функций
perfplot.show(
setup=lambda n: pd.DataFrame(np.random.randint(0, 10, size=(n, 1))),
kernels=[
lambda df: list(cumsum_limit_nb(df.iloc[:, 0].values, 5)),
lambda df: dynamic_cumsum2(df.iloc[:, 0].values, 5)
],
labels=['cumsum_limit_nb', 'dynamic_cumsum2'],
n_range=[2**k for k in range(0, 17)],
xlabel='N',
logx=True,
logy=True,
equality_check=None # TODO - update when @jpp adds in the final `yield`
)
График log-log показывает, что функция генератора быстрее для больших входов:
Возможное объяснение состоит в том, что с увеличением N накладные расходы на добавление в растущий список в dynamic_cumsum2
становятся заметными. В то время как cumsum_limit_nb
просто нужно yield
.