Как эффективно рассчитать расстояние между точками GPS в одном наборе данных и точками GPS в другом наборе данных, используя data.table - PullRequest
0 голосов
/ 08 ноября 2018

Я столкнулся с проблемой кодирования (оптимизации) в R. У меня есть длинный набор данных с GPS-координатами (lon, lat, timestamp), и для каждой строки мне нужно проверить, находится ли местоположение рядом с автобусной остановкой. У меня есть файл .csv со всеми автобусными остановками (в Нидерландах). Файл GPS-координат имеет длину в миллионы записей, но при необходимости его можно разделить. Длина набора данных автобусной остановки составляет около 5500 записей.
Используя код и советы, приведенные, в частности, на следующих страницах:

1) Как эффективно рассчитать расстояние между парой координат, используя data.table: =

2) Использование простого цикла for для пространственных данных

3) Рассчитать расстояние между двумя точками широты и долготы? (Формула Haversine)

4) Самый быстрый способ определения СТРАНЫ по миллионам координат GPS [R]

Мне удалось создать код, который работает, но (слишком) медленно. Мне было интересно, если кто-то может помочь мне с более быстрой реализацией data.table () или может указать, где узкое место в моем коде? Это функция spDistsN1 () или комбинация функций apply и melt ()? Я чувствую себя наиболее комфортно в R, но открыт для другого программного обеспечения (если оно с открытым исходным кодом).

Из-за соображений конфиденциальности я не могу загрузить полный набор данных, но это (небольшой) воспроизводимый пример, который не слишком отличается от того, как выглядят реальные данные.

# packages:
library(data.table)
library(tidyverse)
library(sp)


# create GPS data
number_of_GPS_coordinates <- 20000
set.seed(1)
gpsdata<-as.data.frame(cbind(id=1:number_of_GPS_coordinates, 
                             lat=runif(number_of_GPS_coordinates,50.5,53.5), 
                             lon=runif(number_of_GPS_coordinates,4,7)))

# create some busstop data. In this case only 2000 bus stops
set.seed(1)
number_of_bus_stops <- 2000
stop<-as.data.frame(gpsdata[sample(nrow(gpsdata), number_of_bus_stops), -1]) # of course do not keep id variable
stop$lat<-stop$lat+rnorm(number_of_bus_stops,0,.0005)
stop$lon<-stop$lon+rnorm(number_of_bus_stops,0,.0005)
busdata.data<-cbind(stop, name=replicate(number_of_bus_stops, paste(sample(LETTERS, 15, replace=TRUE), collapse="")))

names(busdata.data) <- c("latitude_bustops",  "longitude_bustops", "name")

Загрузите реальные данные автобусной остановки, если хотите, довольно сложно воспроизвести случайную выборку этого.

#temp <- tempfile()
#download.file("http://data.openov.nl/haltes/stops.csv.gz", temp) #1.7MB
#gzfile(temp, 'rt')
#busstopdata <- read.csv(temp, stringsAsFactors = FALSE)
#unlink(temp)
#bus_stops <- fread("bus_stops.csv")
#busdata.data <- busstopdata %>%
#  mutate(latitude_bustops = latitude)%>%
#  mutate(longitude_bustops = longitude)%>%
#  dplyr::select(name, latitude_bustops,  longitude_bustops)

Код, который я сейчас использую для расчета расстояний. Это работает, но довольно медленно

countDataPoints3 <- function(p) {
  distances <- spDistsN1(data.matrix(gpsdata[,c("lon","lat")]), 
                         p,
                         longlat=TRUE) # in km
  return(which(distances <= .2)) # distance is now set to 200 meters
}


# code to check per data point if a bus stop is near and save this per bus stop in a list entry
datapoints.by.bustation       <- apply(data.matrix(busdata.data[,c("longitude_bustops","latitude_bustops")]), 1, countDataPoints3)


# rename list entries
names(datapoints.by.bustation) <- busdata.data$name

# melt list into one big data.frame
long.data.frame.busstops       <- melt(datapoints.by.bustation)

# now switch to data.table grammar to speed up process
# set data.table
setDT(gpsdata)
gpsdata[, rowID := 1:nrow(gpsdata)]
setkey(gpsdata, key = "rowID")
setDT(long.data.frame.busstops)

# merge the data, and filter non-unique entries 
setkey(long.data.frame.busstops, key = "value")
GPS.joined        <- merge(x = gpsdata, y = long.data.frame.busstops, by.x= "rowID", by.y= "value", all.x=TRUE)
GPS.joined.unique <- unique(GPS.joined, by="id") # mak

# this last part of the code is needed to make sure that if there are more than 1 bus stop nearby it puts these bus stop in a list
# instead of adding row and making the final data.frame longer than the original one
GPS.joined.unique2 <- setDT(GPS.joined.unique)[order(id, L1), list(L1=list(L1)), by=id]
GPS.joined.unique2[, nearby := TRUE][is.na(L1), nearby := FALSE] # add a dummy to check if any bus stop is nearby.

# makes sense:
as.tibble(GPS.joined.unique2) %>%
  summarize(sum = sum(nearby)) 

Ответы [ 2 ]

0 голосов
/ 10 ноября 2018

Рассмотрите возможность разрезания с использованием метода нарезки: сначала режьте по близким широтам и близким долготам. В этом случае 0,5 широты и 0,5 долготы (что по-прежнему около 60 км диска). Мы можем использовать превосходную поддержку data.table подвижных соединений.

Следующее действие занимает несколько миллисекунд для 20000 записей и всего несколько секунд для записей 2M.

library(data.table)
library(hutils)
setDT(gpsdata)
setDT(busdata.data)

gps_orig <- copy(gpsdata)
busdata.orig <- copy(busdata.data)

setkey(gpsdata, lat)

# Just to take note of the originals
gpsdata[, gps_lat := lat + 0]
gpsdata[, gps_lon := lon + 0]

busdata.data[, lat := latitude_bustops + 0]
busdata.data[, lon := longitude_bustops + 0]


setkey(busdata.data, lat)

gpsID_by_lat <- 
  gpsdata[, .(id), keyby = "lat"]


By_latitude <- 
  busdata.data[gpsdata, 
               on = "lat",

               # within 0.5 degrees of latitude
               roll = 0.5, 
               # +/-
               rollends = c(TRUE, TRUE),

               # and remove those beyond 0.5 degrees
               nomatch=0L] %>%
  .[, .(id_lat = id,
        name_lat = name,
        bus_lat = latitude_bustops,
        bus_lon = longitude_bustops,
        gps_lat,
        gps_lon),
    keyby = .(lon = gps_lon)]

setkey(busdata.data, lon)

By_latlon <-
  busdata.data[By_latitude,
               on = c("name==name_lat", "lon"),

               # within 0.5 degrees of latitude
               roll = 0.5, 
               # +/-
               rollends = c(TRUE, TRUE),
               # and remove those beyond 0.5 degrees
               nomatch=0L]

By_latlon[, distance := haversine_distance(lat1 = gps_lat, 
                                           lon1 = gps_lon,
                                           lat2 = bus_lat,
                                           lon2 = bus_lon)]

By_latlon[distance < 0.2]
0 голосов
/ 10 ноября 2018

Это функция, которую я придумал до сих пор. @ Dave2e, спасибо. Это уже намного быстрее, чем у меня было. Очевидно, что здесь еще много возможностей для совершенствования, но в настоящее время он достаточно быстр для моего анализа. Я только нарезать широту, а не долготу. Единственная причина этого заключается в том, что это делает индексирование и последующее циклическое перемещение по индексам действительно простым, но большую скорость можно было бы получить также благодаря индексации по долготе. Кроме того, в реальных данных GPS, как правило, имеется много повторяющихся значений (один и тот же долг / широта, разная отметка времени), код также будет более эффективным, если он будет учитывать это. Может быть, я буду работать над этим в будущем.

# this app could be much faster if it would filter by duplicate GPS coordinates

check_if_close <- function(dataset1     = GPS.Utrecht.to.Gouda,       
                           dataset2     = bus_stops,     
                           n.splits     = 500,
                           desired.dist = .2){

# dataset1 needs at least the columns 
#  - "id", 
#  - "device_id"
#  - "latitude"
#  - "longitude"

# dataset2 needs at least the columns 
#  - "id", 
#  - "name"
#  - "latitude"
#  - "longitude"

# these are the average coordinates of the Netherlands. A change of ,.0017 in latitude leads to a change of 189 meters 
# spDistsN1(matrix(c(5.2913, 52.1326), ncol=2), matrix(c(5.2913, 52.1326+.0017), ncol=2), longlat=TRUE)*1000
# [1] 189.1604
# this means that the latitude slices we can cut (the subsection of) the Netherlands is have to be at least .0017 wide.
# if we look at the Netherlands a whole this would mean we can use max  (53.5-50.5)/.0017 = 1765 slices.
# if we look only at a small subsection (because we are only looking a a single trip for example we need much less slices.  

# 1) we only select the variables we need from dataset 1
  dataset1 <- setDT(dataset1)[,c("id", "device_id", "latitude", "longitude")]
  setnames(dataset1, old = c("id", "latitude", "longitude"), new = c("id_dataset1", "latitude_gps", "longitude_gps"))

# 2) we only select the variables we need from dataset 2
  dataset2 <- setDT(dataset2)[,c("id", "name", "latitude", "longitude")]
  setnames(dataset2, old = c("id", "latitude", "longitude"), new = c("id_dataset2", "latitude_feature", "longitude_feature"))

# 3) only keep subet of dataset2 that falls within dataset 1. 
#    There is no reason to check if features are close that already fall out of the GPS coordinates in the trip we want to check
#    We do add a 0.01 point margin around it to be on the save side. Maybe a feature falls just out the GPS coordinates, 
#    but is still near to a GPS point
  dataset2 <- dataset2[latitude_feature  %between%  (range(dataset1$latitude_gps) + c(-0.01, +0.01)) 
                       & longitude_feature %between% (range(dataset1$longitude_gps) + c(-0.01, +0.01)), ]

# 4) we cut the dataset2 into slices on the latitude dimension
#    some trial  and error is involved getting the right amount. if you add to many you get a large and redudant amount of empty values
#    if you add to few you get you need to check too many GPS to feauture distances per slice



dataset2[, range2 := as.numeric(Hmisc::cut2(dataset2$latitude_feature, g=n.splits))]

# 5) calculate the ranges of the slices we just created
ranges <- dataset2[,list(Min=min(latitude_feature), Max= max(latitude_feature)), by=range2][order(range2)]
setnames(ranges, old = c("range2", "Min", "Max"), new = c("latitude_range", "start", "end"))


# 6) now we assign too which slice every GPS coordinate in our dataset1 belongs
#    this is super fast when using data.table grammar
elements1 <- dataset1$latitude_gps
ranges <- setDT(ranges)[data.table(elements1), on = .(start <= elements1, end >=elements1)]
ranges[, rowID := seq_len(.N)]
dataset1[,rowID := seq_len(.N)]
setkey(dataset1, rowID)
setkey(ranges, rowID)
dataset1<-dataset1[ranges]

# 7) this is the actual function we use to check if a datapoint is nearby.
#    potentially there are faster function to do this??
checkdatapoint <- function(p, h, dist=desired.dist) {
  distances <- spDistsN1(data.matrix(filter(dataset1,latitude_range==h)[,c("longitude_gps","latitude_gps")]), 
                         p,
                         longlat=TRUE) # in km
  return(which(distances <= dist)) # distance is now set to 200 meters
}

# 8) we assign a ID to the dataset1 starting again at every slice.
#    we need this to later match the data again 
dataset1[, ID2 := sequence(.N), by = latitude_range]

# 9) here we loop over all the splits and for every point check if there is a feature nearby in the slice it falls in
#    to be on the save side we also check the slice left and right of it, just to make sure we do not miss features that
#    are nearby, but just fall in a different slice.
#         9a: create an empty list we fill with dataframes later 
TT<-vector("list", length=n.splits)
#         9b: loop over the number of slices using above defined function

for(i in 1:n.splits){
  datapoints.near.feature<-apply(data.matrix(dataset2[range2 %in% c(i-1,i, i+1), c("longitude_feature","latitude_feature")]), 1, checkdatapoint, h=i)
#         9c: if in that slice there was no match between a GPS coordinate and an nearby feature, we create an empty list input
    if(class(datapoints.near.feature)=="integer"|class(datapoints.near.feature)=="matrix"){
    TT[[i]] <-NULL
  } else {
#         9d: if there was a match we get a list of data point that are named
    names(datapoints.near.feature)    <- dataset2[range2 %in% c(i-1,i, i+1), name]
#         9e: then we 'melt' this list into  data.frame
    temp <- melt(datapoints.near.feature)
#         9f: then we transform it into a data.table and change the names
    setDT(temp)
    setnames(temp, old=c("value", "L1"), new= c("value", "feature_name"))
#         9h: then we only select the data point in dataset1 that fall in the current slice give them an 
#             ID and merge them with the file of nearby busstops
    gpsdata.f <- dataset1[latitude_range==i, ]
    gpsdata.f[, rowID2 := seq_len(.N)]
    setkey(gpsdata.f, key = "rowID2")
    setkey(temp, key = "value")
    GPS.joined.temp <- merge(x = gpsdata.f, y = temp, by.x= "rowID2", by.y= "value", all.x=TRUE)
#         9i: we only keep the unique entries and for every slice save them to the list
    GPS.joined.unique.temp <- unique(GPS.joined.temp, by=c("id_dataset1", "feature_name"))
    TT[[i]] <-  GPS.joined.unique.temp 
    cat(paste0(round(i/n.splits*100), '% completed'), " \r"); flush.console()


    #cat(i/n.splits*100, " \r"); flush.console()

  }

}

# 10) now we left join the original dataset and and the data point that are near a feature
finallist<- merge(x = dataset1, 
                  y = rbindlist(TT[vapply(TT, Negate(is.null), NA)]), 
                  by.x= "id_dataset1", 
                  by.y= "id_dataset1", 
                  all.x=TRUE)

# 11) we add a new logical variable to check if any bus stop is near
finallist[, nearby := TRUE][is.na(feature_name), nearby := FALSE] # add a dummy to check if any bus stop is nearby.

# 12) if a point is near multiple features at once these are listed in a vector,
#     instead of having duplicate rows with teh same id but different features
finallist <- unique(setDT(finallist)[order(id_dataset1, feature_name), list(feature_name=list(feature_name), id=id_dataset1, lat=latitude_gps.x, lon=longitude_gps.x, nearby=nearby), by=id_dataset1], by="id_dataset1")

return(finallist)
}
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...