Это функция, которую я придумал до сих пор. @ Dave2e, спасибо. Это уже намного быстрее, чем у меня было. Очевидно, что здесь еще много возможностей для совершенствования, но в настоящее время он достаточно быстр для моего анализа. Я только нарезать широту, а не долготу. Единственная причина этого заключается в том, что это делает индексирование и последующее циклическое перемещение по индексам действительно простым, но большую скорость можно было бы получить также благодаря индексации по долготе. Кроме того, в реальных данных GPS, как правило, имеется много повторяющихся значений (один и тот же долг / широта, разная отметка времени), код также будет более эффективным, если он будет учитывать это. Может быть, я буду работать над этим в будущем.
# this app could be much faster if it would filter by duplicate GPS coordinates
check_if_close <- function(dataset1 = GPS.Utrecht.to.Gouda,
dataset2 = bus_stops,
n.splits = 500,
desired.dist = .2){
# dataset1 needs at least the columns
# - "id",
# - "device_id"
# - "latitude"
# - "longitude"
# dataset2 needs at least the columns
# - "id",
# - "name"
# - "latitude"
# - "longitude"
# these are the average coordinates of the Netherlands. A change of ,.0017 in latitude leads to a change of 189 meters
# spDistsN1(matrix(c(5.2913, 52.1326), ncol=2), matrix(c(5.2913, 52.1326+.0017), ncol=2), longlat=TRUE)*1000
# [1] 189.1604
# this means that the latitude slices we can cut (the subsection of) the Netherlands is have to be at least .0017 wide.
# if we look at the Netherlands a whole this would mean we can use max (53.5-50.5)/.0017 = 1765 slices.
# if we look only at a small subsection (because we are only looking a a single trip for example we need much less slices.
# 1) we only select the variables we need from dataset 1
dataset1 <- setDT(dataset1)[,c("id", "device_id", "latitude", "longitude")]
setnames(dataset1, old = c("id", "latitude", "longitude"), new = c("id_dataset1", "latitude_gps", "longitude_gps"))
# 2) we only select the variables we need from dataset 2
dataset2 <- setDT(dataset2)[,c("id", "name", "latitude", "longitude")]
setnames(dataset2, old = c("id", "latitude", "longitude"), new = c("id_dataset2", "latitude_feature", "longitude_feature"))
# 3) only keep subet of dataset2 that falls within dataset 1.
# There is no reason to check if features are close that already fall out of the GPS coordinates in the trip we want to check
# We do add a 0.01 point margin around it to be on the save side. Maybe a feature falls just out the GPS coordinates,
# but is still near to a GPS point
dataset2 <- dataset2[latitude_feature %between% (range(dataset1$latitude_gps) + c(-0.01, +0.01))
& longitude_feature %between% (range(dataset1$longitude_gps) + c(-0.01, +0.01)), ]
# 4) we cut the dataset2 into slices on the latitude dimension
# some trial and error is involved getting the right amount. if you add to many you get a large and redudant amount of empty values
# if you add to few you get you need to check too many GPS to feauture distances per slice
dataset2[, range2 := as.numeric(Hmisc::cut2(dataset2$latitude_feature, g=n.splits))]
# 5) calculate the ranges of the slices we just created
ranges <- dataset2[,list(Min=min(latitude_feature), Max= max(latitude_feature)), by=range2][order(range2)]
setnames(ranges, old = c("range2", "Min", "Max"), new = c("latitude_range", "start", "end"))
# 6) now we assign too which slice every GPS coordinate in our dataset1 belongs
# this is super fast when using data.table grammar
elements1 <- dataset1$latitude_gps
ranges <- setDT(ranges)[data.table(elements1), on = .(start <= elements1, end >=elements1)]
ranges[, rowID := seq_len(.N)]
dataset1[,rowID := seq_len(.N)]
setkey(dataset1, rowID)
setkey(ranges, rowID)
dataset1<-dataset1[ranges]
# 7) this is the actual function we use to check if a datapoint is nearby.
# potentially there are faster function to do this??
checkdatapoint <- function(p, h, dist=desired.dist) {
distances <- spDistsN1(data.matrix(filter(dataset1,latitude_range==h)[,c("longitude_gps","latitude_gps")]),
p,
longlat=TRUE) # in km
return(which(distances <= dist)) # distance is now set to 200 meters
}
# 8) we assign a ID to the dataset1 starting again at every slice.
# we need this to later match the data again
dataset1[, ID2 := sequence(.N), by = latitude_range]
# 9) here we loop over all the splits and for every point check if there is a feature nearby in the slice it falls in
# to be on the save side we also check the slice left and right of it, just to make sure we do not miss features that
# are nearby, but just fall in a different slice.
# 9a: create an empty list we fill with dataframes later
TT<-vector("list", length=n.splits)
# 9b: loop over the number of slices using above defined function
for(i in 1:n.splits){
datapoints.near.feature<-apply(data.matrix(dataset2[range2 %in% c(i-1,i, i+1), c("longitude_feature","latitude_feature")]), 1, checkdatapoint, h=i)
# 9c: if in that slice there was no match between a GPS coordinate and an nearby feature, we create an empty list input
if(class(datapoints.near.feature)=="integer"|class(datapoints.near.feature)=="matrix"){
TT[[i]] <-NULL
} else {
# 9d: if there was a match we get a list of data point that are named
names(datapoints.near.feature) <- dataset2[range2 %in% c(i-1,i, i+1), name]
# 9e: then we 'melt' this list into data.frame
temp <- melt(datapoints.near.feature)
# 9f: then we transform it into a data.table and change the names
setDT(temp)
setnames(temp, old=c("value", "L1"), new= c("value", "feature_name"))
# 9h: then we only select the data point in dataset1 that fall in the current slice give them an
# ID and merge them with the file of nearby busstops
gpsdata.f <- dataset1[latitude_range==i, ]
gpsdata.f[, rowID2 := seq_len(.N)]
setkey(gpsdata.f, key = "rowID2")
setkey(temp, key = "value")
GPS.joined.temp <- merge(x = gpsdata.f, y = temp, by.x= "rowID2", by.y= "value", all.x=TRUE)
# 9i: we only keep the unique entries and for every slice save them to the list
GPS.joined.unique.temp <- unique(GPS.joined.temp, by=c("id_dataset1", "feature_name"))
TT[[i]] <- GPS.joined.unique.temp
cat(paste0(round(i/n.splits*100), '% completed'), " \r"); flush.console()
#cat(i/n.splits*100, " \r"); flush.console()
}
}
# 10) now we left join the original dataset and and the data point that are near a feature
finallist<- merge(x = dataset1,
y = rbindlist(TT[vapply(TT, Negate(is.null), NA)]),
by.x= "id_dataset1",
by.y= "id_dataset1",
all.x=TRUE)
# 11) we add a new logical variable to check if any bus stop is near
finallist[, nearby := TRUE][is.na(feature_name), nearby := FALSE] # add a dummy to check if any bus stop is nearby.
# 12) if a point is near multiple features at once these are listed in a vector,
# instead of having duplicate rows with teh same id but different features
finallist <- unique(setDT(finallist)[order(id_dataset1, feature_name), list(feature_name=list(feature_name), id=id_dataset1, lat=latitude_gps.x, lon=longitude_gps.x, nearby=nearby), by=id_dataset1], by="id_dataset1")
return(finallist)
}