Есть несколько способов ускорить это:
- Используйте
inline
на gen()
, уменьшая количество вызовов функций.
- Используйте
Rcpp::runif
вместо цикла с R::runif
для удаления еще большего количества вызовов функций.
- Используйте более быстрый ГСЧ, который допускает параллельное выполнение.
Здесь пункты 1. и 2.:
#include <Rcpp.h>
using namespace Rcpp;
// generating function
inline NumericVector gen(NumericVector A, NumericVector B){
NumericVector out = no_init_vector(2);
out[0] = R::runif(A[0],A[1]) + R::runif(B[0],B[1]);
out[1] = R::runif(A[0],A[1]) - R::runif(B[0],B[1]);
return out;
}
// [[Rcpp::export]]
// draw n observations
NumericVector rdraw(int n, NumericVector A, NumericVector B){
NumericMatrix out = no_init_matrix(n, 2);
for (int i = 0; i < n; ++i) {
out(i,_) = gen(A, B);
}
return out;
}
// [[Rcpp::export]]
// draw n observations
NumericVector rdraw2(int n, NumericVector A, NumericVector B){
NumericMatrix out = no_init_matrix(n, 2);
out(_, 0) = Rcpp::runif(n, A[0],A[1]) + Rcpp::runif(n, B[0],B[1]);
out(_, 1) = Rcpp::runif(n, A[0],A[1]) - Rcpp::runif(n, B[0],B[1]);
return out;
}
/*** R
set.seed(42)
system.time(rdraw(1e7, c(0,2), c(1,3)))
system.time(rdraw2(1e7, c(0,2), c(1,3)))
*/
Результат:
> set.seed(42)
> system.time(rdraw(1e7, c(0,2), c(1,3)))
user system elapsed
1.576 0.034 1.610
> system.time(rdraw2(1e7, c(0,2), c(1,3)))
user system elapsed
0.458 0.139 0.598
Для сравнения, ваш исходный код занял около 1,8 с для 10 ^ 7 розыгрышей. Для пункта 3. Я адаптирую код из параллельной виньетки моего dqrng пакета:
#include <Rcpp.h>
// [[Rcpp::depends(dqrng)]]
#include <xoshiro.h>
#include <dqrng_distribution.h>
// [[Rcpp::plugins(openmp)]]
#include <omp.h>
// [[Rcpp::depends(RcppParallel)]]
#include <RcppParallel.h>
// [[Rcpp::plugins(cpp11)]]
// [[Rcpp::export]]
Rcpp::NumericMatrix rdraw3(int n, Rcpp::NumericVector A, Rcpp::NumericVector B, int seed, int ncores) {
dqrng::uniform_distribution distA(A(0), A(1));
dqrng::uniform_distribution distB(B(0), B(1));
dqrng::xoshiro256plus rng(seed);
Rcpp::NumericMatrix res = Rcpp::no_init_matrix(n, 2);
RcppParallel::RMatrix<double> output(res);
#pragma omp parallel num_threads(ncores)
{
dqrng::xoshiro256plus lrng(rng); // make thread local copy of rng
lrng.jump(omp_get_thread_num() + 1); // advance rng by 1 ... ncores jumps
auto genA = std::bind(distA, std::ref(lrng));
auto genB = std::bind(distB, std::ref(lrng));
#pragma omp for
for (int i = 0; i < n; ++i) {
output(i, 0) = genA() + genB();
output(i, 1) = genA() - genB();
}
}
return res;
}
/*** R
system.time(rdraw3(1e7, c(0,2), c(1,3), 42, 2))
*/
Результат:
> system.time(rdraw3(1e7, c(0,2), c(1,3), 42, 2))
user system elapsed
0.276 0.025 0.151
Таким образом, с более быстрым ГСЧ и умеренным параллелизмом мы можем получить порядок времени выполнения. Конечно, результаты будут другими, но итоговая статистика должна быть одинаковой.