Я использую LibShortText для классификации коротких текстов.
Я обучил модель и использую ее для получения прогнозов классов в моем наборе тестов, выполнив:
python text-train.py -L 0 -f ./demo/train_file
python text-predict.py ./demo/train_file train_file.model output
Файл output
содержит оценку каждого класса для каждого тестового образца. Она является началом файла output
:
version: 1
analyzable: 1
text-src: ./demo/train_file
extra-files:
model-id: 22d9e6defd38ed92e45662d576262915d10c3374
Tickets Tickets 1.045974012515694 -0.1533289000025808 -0.142460215262256 -0.1530588765291932 -0.1249182478102407 -0.1190708362082807 -0.06841237067728836 0.04587568197139553 -0.2283616562229066 -0.102238591774343
Stamps Stamps -0.1187719176481736 1.118188003417143 -0.08034439513604429 -0.1973997029054026 -0.06355109135595602 -0.1786639939826796 -0.1169254102259164 -0.01967861752032143 -0.06964465109882922 -0.2732082235438185
Music Music -0.1315596826953709 -0.2641082947449856 1.008713836384851 -0.04068831625284784 -0.1545790157496564 -0.1010212095804389 -0.02069378431571431 -0.02404317930606417 0.008960552873498827 -0.2809809066132714
Jewelry & Watches Jewelry & Watches -0.0749032450936907 -0.1369122108940684 -0.2159355702219642 0.9582440549577076 -0.141187218792264 -0.1290355317490395 -0.04287756450848382 -0.0919782002284954 -0.04312539181047169 -0.0822891216592294
Tickets Tickets 0.9291396425612148 -0.1597595507175184 -0.07086077554348413 -0.07087036006347401 -0.1111802245732816 -0.2329161314957608 -0.07080154336497513 -0.07093153970747144 -0.07096098431125453 -0.07085853278399512
Books Books -0.03482279197164031 -0.02622229736755784 -0.08576360644172253 -0.1209545478269265 0.9735039690597804 -0.02640896142537765 -0.1511226188239169 -0.1785299152500055 -0.1569282110333412 -0.1927510189192921
Tickets Tickets 1.165624491239117 -0.1643444003616841 -0.279795018266336 -0.05911033737681937 -0.1496733471948844 -0.1774767469424229 -0.1806900189575362 -0.05711408596057094 0.06427848575613292 -0.1616990219349959
Art Art -0.07563152438778584 -0.1926345255861422 -0.1379519287608234 -0.1728869014895525 -0.2081235484009353 0.9764371359082827 -0.06097998223834129 -0.06082239643658216 -0.0434090642865785 -0.0239972643215402
Art Art -0.21374038053991 0.0146962630542977 -0.02279914632208601 -0.001108284295731699 -0.2621058759589903 1.016592310148241 0.01436347343617804 -0.04476369315079338 -0.1246095742882179 -0.3765250920829869
Books Books -0.08063364674726788 -0.08053738921453879 -0.08032365427931695 -0.1496633152184083 0.9195583554164264 -0.08011940998873018 -0.08053175336913043 -0.16302082274963 -0.1105339242133948 -0.09419443963601073
Как узнать, какому классу соответствует каждый балл?
Я знаю, что могу сделать вывод, посмотрев на прогнозируемый класс и максимальный балл для нескольких тестовых образцов, но я надеюсь, что существует какой-то прямой путь.