Я делаю несколько графиков из больших наборов данных. В этом коде размеры результирующих требуемых объектов графика очень малы, но увеличенное использование памяти намного больше.
Мои выводы на данный момент заключаются в том, что увеличение использования памяти, по-видимому, связано с несколькими объектами. В частности, значение объекта tab_ind
не изменяется после процесса построения графика (проверяется с помощью функции identical()
), но его размер значительно увеличивается после процесса (проверяется с помощью функции object.size()
). Единственное, что я делаю с tab_ind
во время процесса, это передаю его функциям в качестве аргументов.
Воспроизводимый пример
Размер симуляции можно контролировать, изменяя N
. В конце прогона печатаются изменение размеров и проверка идентичности tab_ind
.
library(data.table)
library(magrittr)
library(ggplot2)
N <- 6000
set.seed(runif(1, 0, .Machine$integer.max) %>% ceiling)
logit <- function(x) {return(log(x/(1-x)))}
invLogit <- function(x) {return(exp(x)/(1+exp(x)))}
tab_dat <- data.table(datasetID = seq(N), MIX_MIN_SUCCESS = sample(c(0, 1), N, replace = T), MIX_ALL = sample(c(0, 1), N, replace = T))
tab_dat[MIX_MIN_SUCCESS == 0, MIX_ALL := 0]
n <- sample(20:300, N, replace = T)
tab_ind <- data.table(
datasetID = rep(seq(N), times = n),
SIM_ADJ_PP1 = runif(sum(n), 0.00001, 0.99999),
MIX_ADJ_PP1 = runif(sum(n), 0.00001, 0.99999)
)
tab_ind[, c("SIM_ADJ_LOGIT_PP1", "MIX_ADJ_LOGIT_PP1") := list(logit(SIM_ADJ_PP1), logit(MIX_ADJ_PP1))]
checkMem_gc <- function(status) {
print(status)
print(memory.size())
gc()
print(memory.size())
}
## Individual bins for x and y
tab_by_bin_idxy <- function(dt, x, y, xNItv, yNItv, by = "quantile") {
#Binning
if (by == "even") {
checkMem_gc("start x-y breaks")
checkMem_gc("start x breaks")
minN = dt[, min(get(x), na.rm = T)]
checkMem_gc("after x min")
maxN = dt[, max(get(x), na.rm = T)]
checkMem_gc("after x max")
xBreaks = seq(minN, maxN, length.out = xNItv + 1)
checkMem_gc("after seq")
checkMem_gc("after x breaks")
yBreaks = dt[, seq(min(get(y), na.rm = T), max(get(y), na.rm = T), length.out = yNItv + 1)]
checkMem_gc("after y breaks")
} else if (by == "quantile") {
xBreaks = dt[, quantile(get(x), seq(0, 1, length.out = xNItv + 1), names = F)]
yBreaks = dt[, quantile(get(y), seq(0, 1, length.out = yNItv + 1), names = F)]
} else {stop("type of 'by' not support")}
checkMem_gc("after x-y breaks")
xbinCode = dt[, .bincode(get(x), breaks = xBreaks, include.lowest = T)]
checkMem_gc("after x binCode")
xbinMid = sapply(seq(xNItv), function(i) {return(mean(xBreaks[c(i, i+1)]))})[xbinCode]
checkMem_gc("after x binMid")
ybinCode = dt[, .bincode(get(y), breaks = yBreaks, include.lowest = T)]
checkMem_gc("after y binCode")
ybinMid = sapply(seq(yNItv), function(i) {return(mean(yBreaks[c(i, i+1)]))})[ybinCode]
checkMem_gc("after y binMid")
#Creating table
tab_match = CJ(xbinCode = seq(xNItv), ybinCode = seq(yNItv))
checkMem_gc("after tab match")
tab_plot = data.table(xbinCode, xbinMid, ybinCode, ybinMid)[
tab_match, .(xbinMid = xbinMid[1], ybinMid = ybinMid[1], N = .N), keyby = .EACHI, on = c("xbinCode", "ybinCode")
]
checkMem_gc("after tab plot")
colnames(tab_plot)[colnames(tab_plot) == "xbinCode"] = paste0(x, "_binCode")
colnames(tab_plot)[colnames(tab_plot) == "xbinMid"] = paste0(x, "_binMid")
colnames(tab_plot)[colnames(tab_plot) == "ybinCode"] = paste0(y, "_binCode")
colnames(tab_plot)[colnames(tab_plot) == "ybinMid"] = paste0(y, "_binMid")
checkMem_gc("after col name")
rm(list = c("xBreaks", "yBreaks", "xbinCode", "ybinCode", "xbinMid", "ybinMid", "tab_match"))
checkMem_gc("after rm")
#Returning table
return(tab_plot)
}
tab_by_obin_x_str_y <- function(dt, x, y, width, Nbin, by = "even") {
#Binning
if (by == "even") {
xLLim = dt[, seq(min(get(x), na.rm = T), max(get(x), na.rm = T) - width, length.out = Nbin)]
xULim = dt[, seq(min(get(x), na.rm = T) + width, max(get(x), na.rm = T), length.out = Nbin)]
} else if (by == "quantile") {
xLLim = dt[, quantile(get(x), seq(0, 1 - width, length.out = Nbin), names = F)]
xULim = dt[, quantile(get(x), seq(width, 1, length.out = Nbin), names = F)]
} else {stop("type of 'by' not support")}
xbinMid = (xLLim + xULim) / 2
#summarizing y
tab_out <- sapply(seq(Nbin), function(i) {
dt[get(x) >= xLLim[i] & get(x) <= xULim[i], c(mean(get(y), na.rm = T), sd(get(y), na.rm = T),
quantile(get(y), c(0.025, 0.975), names = F))]
}) %>% t %>% as.data.table %>% set_colnames(., c("mean", "sd", ".025p", ".975p")) %>%
cbind(data.table(binCode = seq(Nbin), xLLim, xbinMid, xULim), .)
tab_out[, c("mean_plus_1sd", "mean_minus_1sd") := list(mean + sd, mean - sd)]
return(tab_out)
}
plotEnv <- new.env()
backupEnv <- new.env()
gc()
gc()
checkMem_gc("Starting memory size checking")
start.mem.size <- memory.size()
start_ObjSizes <- sapply(ls(), function(x) {object.size(get(x))})
start_tab_ind <- tab_ind
start_tab_ind_size <- object.size(tab_ind)
dummyEnv <- new.env()
with(dummyEnv, {
## Set function for analyses against SIM_PP1
fcn_SIM_PP1 <- function(dt, newTab = T) {
dat_prob = tab_by_bin_idxy(dt, x = "SIM_ADJ_PP1", y = "MIX_ADJ_PP1", xNItv = 50, yNItv = 50, by = "even")
checkMem_gc("after tab prob")
dat_logit = tab_by_bin_idxy(dt, x = "SIM_ADJ_LOGIT_PP1", y = "MIX_ADJ_LOGIT_PP1",
xNItv = 50, yNItv = 50, by = "even")
checkMem_gc("after tab logit")
if ((!newTab) && exists("summarytab_logit_SIM_ADJ_PP1", where = backupEnv) &&
exists("summarytab_prob_SIM_ADJ_PP1", where = backupEnv)) {
summarytab_logit = get("summarytab_logit_SIM_ADJ_PP1", envir = backupEnv)
summarytab_prob = get("summarytab_prob_SIM_ADJ_PP1", envir = backupEnv)
} else {
summarytab_logit = tab_by_obin_x_str_y(dt, x = "SIM_ADJ_LOGIT_PP1", y = "MIX_ADJ_LOGIT_PP1",
width = 0.05, Nbin = 1000, by = "even")
summarytab_prob = summarytab_logit[, .(
binCode, invLogit(xLLim), invLogit(xbinMid), invLogit(xULim), invLogit(mean), sd,
invLogit(`.025p`), invLogit(`.975p`), invLogit(mean_plus_1sd), invLogit(mean_minus_1sd)
)] %>% set_colnames(colnames(summarytab_logit))
assign("summarytab_logit_SIM_ADJ_PP1", summarytab_logit, envir = backupEnv)
assign("summarytab_prob_SIM_ADJ_PP1", summarytab_prob, envir = backupEnv)
}
checkMem_gc("after summary tab")
plot_prob <- ggplot(dat_prob, aes(x = SIM_ADJ_PP1_binMid)) +
geom_vline(xintercept = 1, linetype = "dotted") +
geom_hline(yintercept = 1, linetype = "dotted") +
geom_abline(slope = 1, intercept = 0, size = 1.5, linetype = "dashed", alpha = 0.5) +
geom_point(aes(y = MIX_ADJ_PP1_binMid, size = N), alpha = 0.5, na.rm = T) +
geom_line(data = summarytab_prob, aes(x = xbinMid, y = mean), size = 1.25, color = "black", na.rm = T) +
geom_line(data = summarytab_prob, aes(x = xbinMid, y = mean_plus_1sd), size = 1.25, color = "blue", na.rm = T, linetype = "dashed") +
geom_line(data = summarytab_prob, aes(x = xbinMid, y = mean_minus_1sd), size = 1.25, color = "blue", na.rm = T, linetype = "dashed") +
scale_size_continuous(range = c(0.5, 5)) +
scale_x_continuous(name = "Simulated PP", breaks = seq(0, 1, 0.25),
labels = c("0%", "25%", "50%", "75%", "100%")) +
scale_y_continuous(name = "Estimated PP", limits = c(0, 1), breaks = seq(0, 1, 0.25),
labels = c("0%", "25%", "50%", "75%", "100%")) +
theme_classic() +
theme(axis.title = element_text(size = 18),
axis.text = element_text(size = 16))
checkMem_gc("after plot prob")
rm(dat_prob)
rm(summarytab_prob)
checkMem_gc("after removing dat_prob and summary_prob")
plot_logit <- ggplot(dat_logit, aes(x = SIM_ADJ_LOGIT_PP1_binMid)) +
geom_abline(slope = 1, intercept = 0, size = 1.5, linetype = "dashed", alpha = 0.5) +
geom_point(aes(y = MIX_ADJ_LOGIT_PP1_binMid, size = N), alpha = 0.5, na.rm = T) +
geom_line(data = summarytab_logit, aes(x = xbinMid, y = mean), size = 1.25, color = "black", na.rm = T) +
geom_line(data = summarytab_logit, aes(x = xbinMid, y = mean_plus_1sd), size = 1.25, color = "blue", na.rm = T, linetype = "dashed") +
geom_line(data = summarytab_logit, aes(x = xbinMid, y = mean_minus_1sd), size = 1.25, color = "blue", na.rm = T, linetype = "dashed") +
scale_size_continuous(range = c(0.5, 5)) +
scale_x_continuous(name = "Simulated LOGIT PP1",
breaks = c(0.00001, 0.001, 0.05, 0.5, 0.95, 0.999, 0.99999) %>% logit,
labels = c("0.001%", "0.1%", "5%", "50%", "95%", "99.9%", "99.999%")) +
scale_y_continuous(name = "Estimated LOGIT PP1", limits = c(-12, 12),
breaks = c(0.00001, 0.001, 0.05, 0.5, 0.95, 0.999, 0.99999) %>% logit,
labels = c("0.001%", "0.1%", "5%", "50%", "95%", "99.9%", "99.999%")) +
theme_classic() +
theme(axis.title = element_text(size = 18),
axis.text = element_text(size = 16))
checkMem_gc("after plot logit")
rm(summarytab_logit)
rm(dat_logit)
checkMem_gc("after removing dat_logit and summary_logit")
return(list(plot_prob, plot_logit))
}
checkMem_gc("after defining function")
## Tabling
tab_stat <- tab_ind[, c("MIX_MIN_SUCCESS", "MIX_ALL") := list(
tab_dat[tab_ind[, datasetID], MIX_MIN_SUCCESS],
tab_dat[tab_ind[, datasetID], MIX_ALL]
)]
checkMem_gc("after new tab_stat")
tab_stat_MIN_SUCCESS <- tab_stat[MIX_MIN_SUCCESS == 1]
checkMem_gc("after new new tab_stat_MIN_SUCCESS")
tab_stat_MIX_ALL <- tab_stat[MIX_ALL == 1]
checkMem_gc("after new tab_stat_MIX_ALL")
# Generating ggplot objects
print("--- start lst full ---")
lst_full <- fcn_SIM_PP1(tab_stat, newTab = F)
checkMem_gc("after lst full")
rm(tab_stat)
checkMem_gc("after rm tab_stat")
print("--- start lst MIN_SUCCESS ---")
lst_MIN_SUCCESS <- fcn_SIM_PP1(tab_stat_MIN_SUCCESS, newTab = F)
checkMem_gc("after lst MIN_SUCCESS")
rm(tab_stat_MIN_SUCCESS)
checkMem_gc("after rm tab_MIN_SUCCESS")
print("--- start lst MIX_ALL ---")
lst_MIX_ALL <- fcn_SIM_PP1(tab_stat_MIX_ALL, newTab = F)
checkMem_gc("after lst MIX_ALL")
rm(tab_stat_MIX_ALL)
checkMem_gc("after rm tab_stat_MIX_ALL")
## Start plotting
print("--- Start plotting ---")
assign("full_sp_MIX_ADJ_PP1_vs_SIM_ADJ_PP1", lst_full[[1]], envir = plotEnv)
checkMem_gc("after assign1")
assign("full_sp_MIX_ADJ_LOGIT_PP1_vs_SIM_ADJ_LOGIT_PP1", lst_full[[2]], envir = plotEnv)
checkMem_gc("after assign2")
rm(lst_full)
checkMem_gc("after removing lst_full")
assign("MIN_SUCCESS_sp_MIX_ADJ_PP1_vs_SIM_ADJ_PP1", lst_MIN_SUCCESS[[1]], envir = plotEnv)
checkMem_gc("after assign3")
assign("MIN_SUCCESS_sp_MIX_ADJ_LOGIT_PP1_vs_SIM_ADJ_LOGIT_PP1", lst_MIN_SUCCESS[[2]], envir = plotEnv)
checkMem_gc("after assign4")
rm(lst_MIN_SUCCESS)
checkMem_gc("after removing lst_MIN_SUCCESS")
assign("MIX_ALL_sp_MIX_ADJ_PP1_vs_SIM_ADJ_PP1", lst_MIX_ALL[[1]], envir = plotEnv)
checkMem_gc("after assign5")
assign("MIX_ALL_sp_MIX_ADJ_LOGIT_PP1_vs_SIM_ADJ_LOGIT_PP1", lst_MIX_ALL[[2]], envir = plotEnv)
checkMem_gc("after assign6")
rm(lst_MIX_ALL)
checkMem_gc("after removing lst_MIX_ALL")
})
checkMem_gc("--- Finishing ---")
rm(dummyEnv)
gc()
checkMem_gc("After clean up")
final.mem.size <- memory.size()
end_ObjSizes <- sapply(ls(), function(x) {object.size(get(x))})
print("")
print("")
print("--- The sizes of all objects (under .GlobalEnv) BEFORE the graph plotting process ---")
print("--- (Before the process starts, all existing objects are stored under .GlobalEnv) ---")
print(start_ObjSizes)
print("")
print("--- The sizes of all objects (under .GlobalEnv) AFTER the graph plotting process ---")
print(end_ObjSizes)
print("--- I have not altered any existing objects under .GlobalEnv during the process, I only passed them to functions. And yet their sizes increase! ---")
print("--- Let's look at the object tab_ind, which shows the largest inflation in object size ---")
print("--- This is the size of tab_ind BEFORE the process: ---")
print(start_tab_ind_size)
print("--- This is the size of tab_ind AFTER the process: ---")
print(object.size(tab_ind))
print("--- But they are identical (checked using the function identical())! ---")
print(identical(start_tab_ind, tab_ind))
print("")
ОБНОВЛЕННЫЙ ВОСПРОИЗВОДИМЫЙ ПРИМЕР
Это обновленный, более простой воспроизводимый пример. Последний вывод заключается в том, что для создания копии объекта data.table
вместо <-
следует использовать <- data.table::copy()
. Последний только создает указатель на одно и то же значение (т.е. по ссылке). Изменение значения нового указателя изменило бы размер объекта исходного указателя, поэтому размер объекта раздулся, когда я изменил новый указатель. Хотя я не уверен, является ли это единственным источником инфляции использования памяти.
library(data.table)
library(magrittr)
library(ggplot2)
N <- 6000
set.seed(runif(1, 0, .Machine$integer.max) %>% ceiling)
logit <- function(x) {return(log(x/(1-x)))}
invLogit <- function(x) {return(exp(x)/(1+exp(x)))}
tab_dat <- data.table(datasetID = seq(N), MIX_MIN_SUCCESS = sample(c(0, 1), N, replace = T), MIX_ALL = sample(c(0, 1), N, replace = T))
tab_dat[MIX_MIN_SUCCESS == 0, MIX_ALL := 0]
n <- sample(20:300, N, replace = T)
tab_ind <- data.table(
datasetID = rep(seq(N), times = n),
SIM_ADJ_PP1 = runif(sum(n), 0.00001, 0.99999),
MIX_ADJ_PP1 = runif(sum(n), 0.00001, 0.99999)
)
## Individual bins for x and y
tab_by_bin_idxy <- function(dt, x, y, xNItv, yNItv, by = "quantile") {
#Binning
if (by == "even") {
minN = dt[, min(get(x), na.rm = T)]
maxN = dt[, max(get(x), na.rm = T)]
xBreaks = seq(minN, maxN, length.out = xNItv + 1)
yBreaks = dt[, seq(min(get(y), na.rm = T), max(get(y), na.rm = T), length.out = yNItv + 1)]
} else if (by == "quantile") {
xBreaks = dt[, quantile(get(x), seq(0, 1, length.out = xNItv + 1), names = F)]
yBreaks = dt[, quantile(get(y), seq(0, 1, length.out = yNItv + 1), names = F)]
}
xbinCode = dt[, .bincode(get(x), breaks = xBreaks, include.lowest = T)]
xbinMid = sapply(seq(xNItv), function(i) {return(mean(xBreaks[c(i, i+1)]))})[xbinCode]
ybinCode = dt[, .bincode(get(y), breaks = yBreaks, include.lowest = T)]
ybinMid = sapply(seq(yNItv), function(i) {return(mean(yBreaks[c(i, i+1)]))})[ybinCode]
#Creating table
tab_match = CJ(xbinCode = seq(xNItv), ybinCode = seq(yNItv))
tab_plot = data.table(xbinCode, xbinMid, ybinCode, ybinMid)[
tab_match, .(xbinMid = xbinMid[1], ybinMid = ybinMid[1], N = .N), keyby = .EACHI, on = c("xbinCode", "ybinCode")
]
colnames(tab_plot)[colnames(tab_plot) == "xbinCode"] = paste0(x, "_binCode")
colnames(tab_plot)[colnames(tab_plot) == "xbinMid"] = paste0(x, "_binMid")
colnames(tab_plot)[colnames(tab_plot) == "ybinCode"] = paste0(y, "_binCode")
colnames(tab_plot)[colnames(tab_plot) == "ybinMid"] = paste0(y, "_binMid")
rm(list = c("xBreaks", "yBreaks", "xbinCode", "ybinCode", "xbinMid", "ybinMid", "tab_match"))
#Returning table
return(tab_plot)
}
plotEnv <- new.env()
backupEnv <- new.env()
gc()
gc(verbose = T)
start.mem.size <- memory.size()
start_ObjSizes <- sapply(ls(), function(x) {object.size(get(x))})
start_tab_ind <- copy(tab_ind)
start_tab_ind_size <- object.size(tab_ind)
dummyEnv <- new.env()
with(dummyEnv, {
## Set function for analyses against SIM_PP1
fcn_SIM_PP1 <- function(dt, newTab = T) {
dat_prob = tab_by_bin_idxy(dt, x = "SIM_ADJ_PP1", y = "MIX_ADJ_PP1", xNItv = 50, yNItv = 50, by = "even")
plot_prob <- ggplot(dat_prob, aes(x = SIM_ADJ_PP1_binMid)) +
geom_vline(xintercept = 1, linetype = "dotted") +
geom_hline(yintercept = 1, linetype = "dotted") +
geom_abline(slope = 1, intercept = 0, size = 1.5, linetype = "dashed", alpha = 0.5) +
geom_point(aes(y = MIX_ADJ_PP1_binMid, size = N), alpha = 0.5, na.rm = T) +
scale_size_continuous(range = c(0.5, 5)) +
scale_x_continuous(name = "Simulated PP", breaks = seq(0, 1, 0.25),
labels = c("0%", "25%", "50%", "75%", "100%")) +
scale_y_continuous(name = "Estimated PP", limits = c(0, 1), breaks = seq(0, 1, 0.25),
labels = c("0%", "25%", "50%", "75%", "100%")) +
theme_classic() +
theme(axis.title = element_text(size = 18),
axis.text = element_text(size = 16))
return(plot_prob)
}
## Tabling
tab_stat <- copy(tab_ind)
tab_stat <- tab_stat[, c("MIX_MIN_SUCCESS", "MIX_ALL") := list(
tab_dat[tab_stat[, datasetID], MIX_MIN_SUCCESS],
tab_dat[tab_stat[, datasetID], MIX_ALL]
)]
tab_stat_MIN_SUCCESS <- tab_stat[MIX_MIN_SUCCESS == 1]
tab_stat_MIX_ALL <- tab_stat[MIX_ALL == 1]
# Generating ggplot objects
lst_full <- fcn_SIM_PP1(tab_stat, newTab = F)
lst_MIN_SUCCESS <- fcn_SIM_PP1(tab_stat_MIN_SUCCESS, newTab = F)
lst_MIX_ALL <- fcn_SIM_PP1(tab_stat_MIX_ALL, newTab = F)
## Start plotting
assign("full_sp_MIX_ADJ_PP1_vs_SIM_ADJ_PP1", lst_full, envir = plotEnv)
assign("MIN_SUCCESS_sp_MIX_ADJ_PP1_vs_SIM_ADJ_PP1", lst_MIN_SUCCESS, envir = plotEnv)
assign("MIX_ALL_sp_MIX_ADJ_PP1_vs_SIM_ADJ_PP1", lst_MIX_ALL, envir = plotEnv)
})
rm(dummyEnv)
rm(start_tab_ind)
gc(verbose = T)
final.mem.size <- memory.size()
end_ObjSizes <- sapply(ls(), function(x) {object.size(get(x))})
My sessionInfo()
при запуске приведенного выше примера:
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_Hong Kong SAR.1252 LC_CTYPE=English_Hong Kong SAR.1252 LC_MONETARY=English_Hong Kong SAR.1252
[4] LC_NUMERIC=C LC_TIME=English_Hong Kong SAR.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.2.1 magrittr_1.5 data.table_1.11.4
loaded via a namespace (and not attached):
[1] colorspace_1.3-2 scales_0.5.0 compiler_3.5.0 lazyeval_0.2.1 plyr_1.8.4 tools_3.5.0 pillar_1.2.3 gtable_0.2.0
[9] tibble_1.4.2 yaml_2.1.19 Rcpp_0.12.18 grid_3.5.0 rlang_0.2.1 munsell_0.4.3