Вторичная / параллельная ось X на графиках Plotly (питон) - PullRequest
0 голосов
/ 17 января 2019

Мне нужно отобразить at_risk чисел на графе Каплана Мейера.

Конечный результат должен быть примерно таким:

enter image description here

У меня проблемы с рендерингом, это No. of patients at risk внизу графика. Значения, отображаемые там, соответствуют значениям по оси X. По сути, это похоже на ось Y, отображаемую параллельно X.

Я пытался воспроизвести найденную здесь несколько осей (https://plot.ly/python/multiple-axes/) безуспешно), а также пытался создать подзаговор и скрыть все, кроме оси X, но тогда его значения не совпадают с приведенным выше графиком. .

Каков наилучший подход для этого?

Ответы [ 2 ]

0 голосов
/ 19 января 2019

Это встроено и в линии жизни:

from lifelines import KaplanMeierFitter

ix = waltons['group'] == 'control'

ax = plt.subplot(111)

kmf_control = KaplanMeierFitter()
ax = kmf_control.fit(waltons.loc[ix]['T'], waltons.loc[ix]['E'], label='control').plot(ax=ax)

kmf_exp = KaplanMeierFitter()
ax = kmf_exp.fit(waltons.loc[~ix]['T'], waltons.loc[~ix]['E'], label='exp').plot(ax=ax)


from lifelines.plotting import add_at_risk_counts
add_at_risk_counts(kmf_exp, kmf_control, ax=ax)

https://lifelines.readthedocs.io/en/latest/Examples.html#displaying-multiple-at-risk-counts-below-plots

Однако я не уверен, что это хорошо работает с плотно

0 голосов
/ 19 января 2019

Вы можете построить графики выживаемости Каплана-Мейера для пациентов с риском с помощью Plotly, используя подзаговоры. Первый график имеет коэффициент выживаемости, второй график представляет собой точечный график, на котором показан только текст, то есть маркеры не показаны.

Оба графика имеют одинаковую ось Y, и пациенты в группе риска представлены с соответствующими значениями x.

Дополнительные примеры здесь: https://github.com/Ashafix/Kaplan-Meier_Plotly

Пример 1 - Рак легких у женщин и мужчин

import pandas as pd
import lifelines
import plotly
import numpy as np
plotly.offline.init_notebook_mode()

df = pd.read_csv('http://www-eio.upc.edu/~pau/cms/rdata/csv/survival/lung.csv')

fig = plotly.tools.make_subplots(rows=2, cols=1, print_grid=False)
kmfs = []

dict_sex = {1: 'Male', 2: 'Female'}

steps = 5 # the number of time points where number of patients at risk which should be shown

x_min = 0 # min value in x-axis, used to make sure that both plots have the same range
x_max = 0 # max value in x-axis

for sex in df.sex.unique():
    T = df[df.sex == sex]["time"]
    E = df[df.sex == sex]["status"]
    kmf = lifelines.KaplanMeierFitter()

    kmf.fit(T, event_observed=E)
    kmfs.append(kmf)
    x_max = max(x_max, max(kmf.event_table.index))
    x_min = min(x_min, min(kmf.event_table.index))
    fig.append_trace(plotly.graph_objs.Scatter(x=kmf.survival_function_.index,
                                               y=kmf.survival_function_.values.flatten(),  
                                               name=dict_sex[sex]), 
                     1, 1)


for s, sex in enumerate(df.sex.unique()):
    x = []
    kmf = kmfs[s].event_table
    for i in range(0, int(x_max), int(x_max / (steps - 1))):
        x.append(kmf.iloc[np.abs(kmf.index - i).argsort()[0]].name)
    fig.append_trace(plotly.graph_objs.Scatter(x=x, 
                                               y=[dict_sex[sex]] * len(x), 
                                               text=[kmfs[s].event_table[kmfs[s].event_table.index == t].at_risk.values[0] for t in x], 
                                               mode='text', 
                                               showlegend=False), 
                     2, 1)

# just a dummy line used as a spacer/header
t = [''] * len(x)
t[1] = 'Patients at risk'
fig.append_trace(plotly.graph_objs.Scatter(x=x, 
                                           y=[''] * len(x), 
                                           text=t,
                                           mode='text', 
                                           showlegend=False), 
                 2, 1)


# prettier layout
x_axis_range = [x_min - x_max * 0.05, x_max * 1.05]
fig['layout']['xaxis2']['visible'] = False
fig['layout']['xaxis2']['range'] = x_axis_range
fig['layout']['xaxis']['range'] = x_axis_range
fig['layout']['yaxis']['domain'] = [0.4, 1]
fig['layout']['yaxis2']['domain'] = [0.0, 0.3]
fig['layout']['yaxis2']['showgrid'] = False
fig['layout']['yaxis']['showgrid'] = False

plotly.offline.iplot(fig)

enter image description here Пример 2 - Рак толстой кишки при различных методах лечения

df = pd.read_csv('http://www-eio.upc.edu/~pau/cms/rdata/csv/survival/colon.csv')

fig = plotly.tools.make_subplots(rows=2, cols=1, print_grid=False)
kmfs = []

steps = 5 # the number of time points where number of patients at risk which should be shown

x_min = 0 # min value in x-axis, used to make sure that both plots have the same range
x_max = 0 # max value in x-axis

for rx in df.rx.unique():
    T = df[df.rx == rx]["time"]
    E = df[df.rx == rx]["status"]
    kmf = lifelines.KaplanMeierFitter()

    kmf.fit(T, event_observed=E)
    kmfs.append(kmf)
    x_max = max(x_max, max(kmf.event_table.index))
    x_min = min(x_min, min(kmf.event_table.index))
    fig.append_trace(plotly.graph_objs.Scatter(x=kmf.survival_function_.index,
                                               y=kmf.survival_function_.values.flatten(),
                                               name=rx), 
                     1, 1)


fig_patients = []
for s, rx in enumerate(df.rx.unique()):
    kmf = kmfs[s].event_table
    x = []
    for i in range(0, int(x_max), int(x_max / (steps - 1))):
        x.append(kmf.iloc[np.abs(kmf.index - i).argsort()[0]].name)
    fig.append_trace(plotly.graph_objs.Scatter(x=x, 
                                               y=[rx] * len(x), 
                                               text=[kmfs[s].event_table[kmfs[s].event_table.index == t].at_risk.values[0] for t in x], 
                                               mode='text', 
                                               showlegend=False), 
                     2, 1)

# just a dummy line used as a spacer/header
t = [''] * len(x)
t[1] = 'Patients at risk'
fig.append_trace(plotly.graph_objs.Scatter(x=x, 
                                           y=[''] * len(x), 
                                           text=t,
                                           mode='text', 
                                           showlegend=False), 
                 2, 1)


# prettier layout
x_axis_range = [x_min - x_max * 0.05, x_max * 1.05]
fig['layout']['xaxis2']['visible'] = False
fig['layout']['xaxis2']['range'] = x_axis_range
fig['layout']['xaxis']['range'] = x_axis_range
fig['layout']['yaxis']['domain'] = [0.4, 1]
fig['layout']['yaxis2']['domain'] = [0.0, 0.3]
fig['layout']['yaxis2']['showgrid'] = False
fig['layout']['yaxis']['showgrid'] = False

plotly.offline.iplot(fig)

enter image description here

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...