Я пишу модель от последовательности к последовательности в Керасе. Почему-то, когда я пытаюсь определить модель в функции ниже:
def define_GRU_models(encoder_input_dim,
output_dim,
activation,
n_units):
# define training encoder #
###########################
# layer 1
encoder_inputs = Input(shape=encoder_input_dim)
l1_encoder = GRU(n_units,
name='l1_encoder',
return_sequences=True,
return_state=True)
l1_encoder_outputs, l1_encoder_state = l1_encoder(encoder_inputs)
# layer 2
l2_encoder = GRU(n_units,
name='l2_encoder',
return_state=True)
l2_encoder_outputs, l2_encoder_state = l2_encoder(l1_encoder_outputs)
# define training decoder #
###########################
# layer 1
decoder_inputs = Input(shape=(None, output_dim))
l1_decoder_gru = GRU(int(n_units/2),
name='l1_decoder_gru',
return_sequences=True,
return_state=False)
l1_decoder_outputs, _ = l1_decoder_gru(decoder_inputs)
# layer 2
l2_decoder_gru = GRU(n_units,
name='l2_decoder_gru',
return_sequences=True,
return_state=False)
l2_decoder_outputs, _ = l2_decoder_gru(l1_decoder_outputs, initial_state=l1_encoder_state)
# layer 3
l3_decoder_gru = GRU(n_units,
name='l3_decoder_gru',
return_sequences=True,
return_state=False)
l3_decoder_outputs, _ = l3_decoder_gru(l2_decoder_outputs, initial_state=l2_encoder_state)
# layer 4
l4_decoder_gru = GRU(int(n_units/2),
name='l4_decoder_gru',
return_state=False )
l4_decoder_outputs, _ = l4_decoder_gru(l3_decoder_outputs)
decoder_dense = Dense(output_dim, name='decoder_dense', activation=activation)
decoder_outputs = decoder_dense(l4_decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
return model
Я дошел до этой ошибки:
Tensor objects are not iterable when eager execution is not enabled. To iterate over this tensor use tf.map_fn.
для этой строки (первый слой декодера):
l1_decoder_outputs, _ = l1_decoder_gru(decoder_inputs)
Я не могу найти решение в любом другом месте. Что я делаю неправильно? Потому что это кажется совместимым с примером keras.
Кстати,
мои входные функции:
(168, 12), 24, 'softmax', 128