Я хочу использовать PNASNet5Large в качестве кодера для моего Unet. Вот мой неправильный подход к PNASNet5Large, но он работает для resnet:
class UNetResNet(nn.Module):
def __init__(self, encoder_depth, num_classes, num_filters=32, dropout_2d=0.2,
pretrained=False, is_deconv=False):
super().__init__()
self.num_classes = num_classes
self.dropout_2d = dropout_2d
if encoder_depth == 34:
self.encoder = torchvision.models.resnet34(pretrained=pretrained)
bottom_channel_nr = 512
elif encoder_depth == 101:
self.encoder = torchvision.models.resnet101(pretrained=pretrained)
bottom_channel_nr = 2048
elif encoder_depth == 152: #this works
self.encoder = torchvision.models.resnet152(pretrained=pretrained)
bottom_channel_nr = 2048
elif encoder_depth == 777: #coded version for the pnasnet
self.encoder = PNASNet5Large()
bottom_channel_nr = 4320 #this unknown for me as well
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(self.encoder.conv1,
self.encoder.bn1,
self.encoder.relu,
self.pool)
self.conv2 = self.encoder.layer1 #PNASNet5Large doesn't have such layers
self.conv3 = self.encoder.layer2
self.conv4 = self.encoder.layer3
self.conv5 = self.encoder.layer4
self.center = DecoderCenter(bottom_channel_nr, num_filters * 8 *2, num_filters * 8, False)
self.dec5 = DecoderBlock(bottom_channel_nr + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv)
self.dec4 = DecoderBlock(bottom_channel_nr // 2 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv)
self.dec3 = DecoderBlock(bottom_channel_nr // 4 + num_filters * 8, num_filters * 4 * 2, num_filters * 2, is_deconv)
self.dec2 = DecoderBlock(bottom_channel_nr // 8 + num_filters * 2, num_filters * 2 * 2, num_filters * 2 * 2,
is_deconv)
self.dec1 = DecoderBlock(num_filters * 2 * 2, num_filters * 2 * 2, num_filters, is_deconv)
self.dec0 = ConvRelu(num_filters, num_filters)
self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
def forward(self, x):
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
conv4 = self.conv4(conv3)
conv5 = self.conv5(conv4)
center = self.center(conv5)
dec5 = self.dec5(torch.cat([center, conv5], 1))
dec4 = self.dec4(torch.cat([dec5, conv4], 1))
dec3 = self.dec3(torch.cat([dec4, conv3], 1))
dec2 = self.dec2(torch.cat([dec3, conv2], 1))
dec1 = self.dec1(dec2)
dec0 = self.dec0(dec1)
return self.final(F.dropout2d(dec0, p=self.dropout_2d))
1) Как узнать, сколько нижних каналов имеет pnasnet. Это заканчивается следующим образом:
...
self.cell_11 = Cell(in_channels_left=4320, out_channels_left=864,
in_channels_right=4320, out_channels_right=864)
self.relu = nn.ReLU()
self.avg_pool = nn.AvgPool2d(11, stride=1, padding=0)
self.dropout = nn.Dropout(0.5)
self.last_linear = nn.Linear(4320, num_classes)
Является ли 4320
ответом или нет, in_channels_left
и out_channels_left
- что-то новое для меня
2) В Resnet есть 4 больших слоя, которые я использую, и кодировщики в моей арке Unet, как получить аналогичный слой из pnasnet
Я использую Pytorch 3.1, и это ссылка на каталог Pnasnet
3) AttributeError: у объекта 'PNASNet5Large' нет атрибута 'conv1' - поэтому он также не имеет conv1
UPD: попробовал что-то подобное, но не получилось
класс UNetPNASNet (nn.Module):
def init (self, encoder_depth, num_classes, num_filters = 32, dropout_2d = 0.2,
pretrained = False, is_deconv = False):
супер (). INIT ()
self.num_classes = num_classes
self.dropout_2d = dropout_2d
self.encoder = PNASNet5Large ()
bottom_channel_nr = 4320
self.center = DecoderCenter (bottom_channel_nr, num_filters * 8 * 2, num_filters * 8, False)
self.dec5 = DecoderBlockV2(bottom_channel_nr + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv)
self.dec4 = DecoderBlockV2(bottom_channel_nr // 2 + num_filters * 8, num_filters * 8 * 2, num_filters * 8, is_deconv)
self.dec3 = DecoderBlockV2(bottom_channel_nr // 4 + num_filters * 8, num_filters * 4 * 2, num_filters * 2, is_deconv)
self.dec2 = DecoderBlockV2(num_filters * 4 * 4, num_filters * 4 * 4, num_filters, is_deconv)
self.dec1 = DecoderBlockV2(num_filters * 2 * 2, num_filters * 2 * 2, num_filters, is_deconv)
self.dec0 = ConvRelu(num_filters, num_filters)
self.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
def forward(self, x):
features = self.encoder.features(x)
relued_features = self.encoder.relu(features)
avg_pooled_features = self.encoder.avg_pool(relued_features)
center = self.center(avg_pooled_features)
dec5 = self.dec5(torch.cat([center, avg_pooled_features], 1))
dec4 = self.dec4(torch.cat([dec5, relued_features], 1))
dec3 = self.dec3(torch.cat([dec4, features], 1))
dec2 = self.dec2(dec3)
dec1 = self.dec1(dec2)
dec0 = self.dec0(dec1)
return self.final(F.dropout2d(dec0, p=self.dropout_2d))
RuntimeError: Заданный размер ввода: (4320x4x4). Расчетный выходной размер: (4320x-6x-6). Размер вывода слишком мал в /opt/conda/conda-bld/pytorch_1525796793591/work/torch/lib/THCUNN/generic/SpatialAveragePooling.cu:63