Панды, объединяющие DF, которые имеют разную форму, имена столбцов и частоту, без дубликатов. - PullRequest
0 голосов
/ 17 января 2019

Панды, объединяющие DF с общим столбцом в 2 индекса (название команды (32 команды), год 2018-2015); DF1 имеет 9 столбцов годовой статистики Team NFL AVG, DF2 имеет тот же индекс команды (32) и год (2018-2015), но имеет 11 столбцов статистики diff для каждой из 17 игр (или «недель») ::: так что я пытаюсь для слияния для каждой команды и года она печатает ежегодное среднее число 1 или (9 столбцов Df1 подряд) для этой команды и года, за которыми следуют DF2 в каждом из 11 столбцов статистики на 17 (ROWS) - игры («недели») ) по индексу каждой команды и года.

lvl0 = result.Tm_name.values
lvl1 = result.Year.values
newidx = pd.MultiIndex.from_arrays([lvl0, lvl1], names = ["Tm_name", "Year"])
result.set_index(newidx, inplace = True)
result.drop(["Year", "Tm_name"], axis = 1, inplace = True)
print(result)


                W     L   W_L_Pct   PD     MoV  SoS   SRS  OSRS  DSRS
Tm_name Year                                                         
1       2015  13.0   3.0   0.813   176.0  11.0  1.3  12.3   9.0   3.4
        2016   7.0   8.0   0.469    56.0   3.5 -1.9   1.6   2.4  -0.8
        2017   8.0   8.0   0.500   -66.0  -4.1  0.4  -3.7  -4.0   0.2
        2018   3.0  13.0   0.188  -200.0 -12.5  1.0 -11.5  -9.6  -1.9
2       2015   8.0   8.0   0.500    -6.0  -0.4 -3.4  -3.8  -4.0   0.3
        2016  11.0   5.0   0.688   134.0   8.4  0.1   8.5  10.5  -2.0
        2017  10.0   6.0   0.625    38.0   2.4  1.9   4.3   1.1   3.2
        2018   7.0   9.0   0.438    -9.0  -0.6  0.4  -0.1   2.5  -2.6
3       2015   5.0  11.0   0.313   -73.0  -4.6  2.6  -1.9  -0.7  -1.2
        2016   8.0   8.0   0.500    22.0   1.4  0.2   1.5  -1.1   2.6
        2017   9.0   7.0   0.563    92.0   5.8 -2.4   3.4   2.2   1.2
        2018  10.0   6.0   0.625   102.0   6.4  0.6   7.0   0.6   6.4
4       2015   8.0   8.0   0.500    20.0   1.3 -1.2   0.0   0.3  -0.2
        2016   7.0   9.0   0.438    21.0   1.3 -1.6  -0.3   1.8  -2.2
        2017   9.0   7.0   0.563   -57.0  -3.6 -0.5  -4.0  -3.0  -1.0
        2018   6.0  10.0   0.375  -105.0  -6.6 -0.3  -6.9  -6.3  -0.6
5       2015  15.0   1.0   0.938   192.0  12.0 -3.9   8.1   6.0   2.1
        2016   6.0  10.0   0.375   -33.0  -2.1  1.1  -1.0  -0.2  -0.8
        2017  11.0   5.0   0.688    36.0   2.3  2.1   4.3   1.7   2.7
        2018   7.0   9.0   0.438    -6.0  -0.4  1.3   0.9   0.1   0.8
6       2015   6.0  10.0   0.375   -62.0  -3.9  2.6  -1.3  -0.1  -1.2
        2016   3.0  13.0   0.188  -120.0  -7.5  0.0  -7.5  -5.2  -2.3
        2017   5.0  11.0   0.313   -56.0  -3.5  2.2  -1.3  -4.6   3.3
        2018  12.0   4.0   0.750   138.0   8.6 -2.3   6.3   1.5   4.8
7       2015  12.0   4.0   0.750   140.0   8.8  1.9  10.6   4.8   5.8


lvl_0 = result2.Tm_name.values
lvl_1 = result2.Year.values
newidx_2 = newidx = pd.MultiIndex.from_arrays([lvl_0, lvl_1], names=["Tm_name", "Year"])
result2.set_index(newidx, inplace=True)
result2.drop(["Year", "Tm_name"], axis=1, inplace=True)
print(result2)

             Week    Date     win_loss  home_away  Opp1_team  Tm_Pnts  \
Tm_name Year                                                            
1       2018   1  2018-09-09     0.0       1.0       32.0       6.0     
        2018   2  2018-09-16     0.0       0.0       18.0       0.0     
        2018   3  2018-09-23     0.0       1.0        6.0      14.0     
        2018   4  2018-09-30     0.0       1.0       28.0      17.0     
        2018   5  2018-10-07     1.0       0.0       29.0      28.0     
        2018   6  2018-10-14     0.0       0.0       20.0      17.0     
        2018   7  2018-10-18     0.0       1.0       10.0      10.0     
        2018   8  2018-10-28     1.0       1.0       29.0      18.0     
        2018  10  2018-11-11     0.0       0.0       16.0      14.0     
        2018  11  2018-11-18     0.0       1.0       25.0      21.0     
        2018  12  2018-11-25     0.0       0.0       17.0      10.0     
        2018  13  2018-12-02     1.0       0.0       12.0      20.0     
        2018  14  2018-12-09     0.0       1.0       11.0       3.0     
        2018  15  2018-12-16     0.0       0.0        2.0      14.0     
        2018  16  2018-12-23     0.0       1.0       18.0       9.0     
        2018  17  2018-12-30     0.0       0.0       28.0      24.0     
        2017   1  2017-09-10     0.0       0.0       11.0      23.0     
        2017   2  2017-09-17     1.0       0.0       14.0      16.0     
        2017   3  2017-09-25     0.0       1.0        9.0      17.0     
        2017   4  2017-10-01     1.0       1.0       29.0      18.0     
        2017   5  2017-10-08     0.0       0.0       26.0       7.0     
        2017   6  2017-10-15     1.0       1.0       30.0      38.0     
        2017   7  2017-10-22     0.0       0.0       18.0       0.0     
        2017   9  2017-11-05     1.0       0.0       29.0      20.0     
        2017  10  2017-11-09     0.0       1.0       28.0      16.0     
        2017  11  2017-11-19     0.0       0.0       13.0      21.0     
        2017  12  2017-11-26     1.0       1.0       15.0      27.0     
        2017  13  2017-12-03     0.0       1.0       18.0      16.0     
        2017  14  2017-12-10     1.0       1.0       31.0      12.0     
        2017  15  2017-12-17     0.0       0.0       32.0      15.0     
...           ...        ...       ...        ...        ...      ...   
        2016   5  2016-10-06     1.0       0.0       29.0      33.0     
        2016   6  2016-10-17     1.0       1.0       24.0      28.0     
        2016   7  2016-10-23     NaN       1.0       28.0       6.0     
        2016   8  2016-10-30     0.0       0.0        5.0      20.0     
        2016  10  2016-11-13     1.0       1.0       29.0      23.0     
        2016  11  2016-11-20     0.0       0.0       20.0      24.0     
        2016  12  2016-11-27     0.0       0.0        2.0      19.0     
        2016  13  2016-12-04     1.0       1.0       32.0      31.0     
        2016  14  2016-12-11     0.0       0.0       19.0      23.0     
        2016  15  2016-12-18     0.0       1.0       22.0      41.0     
        2016  16  2016-12-24     1.0       0.0       28.0      34.0     
        2016  17  2016-01-01     1.0       0.0       18.0      44.0     
        2015   1  2015-09-13     1.0       1.0       22.0      31.0     
        2015   2  2015-09-20     1.0       0.0        6.0      48.0     
        2015   3  2015-09-27     1.0       1.0       29.0      47.0     
        2015   4  2015-10-04     0.0       1.0        NaN      22.0     
        2015   5  2015-10-11     1.0       0.0       11.0      42.0     
        2015   6  2015-10-18     0.0       0.0       27.0      13.0     
        2015   7  2015-10-26     1.0       1.0        3.0      26.0     
        2015   8  2015-11-01     1.0       0.0        8.0      34.0     
        2015  10  2015-11-15     1.0       0.0       28.0      39.0     
        2015  11  2015-11-22     1.0       1.0        7.0      34.0     
        2015  12  2015-11-29     1.0       0.0       29.0      19.0     
        2015  13  2015-12-06     1.0       0.0        NaN      27.0     
        2015  14  2015-12-10     1.0       1.0       20.0      23.0     
        2015  15  2015-12-20     1.0       0.0       26.0      40.0     
        2015  16  2015-12-27     1.0       1.0       12.0      38.0     
        2015  17  2015-01-03     0.0       1.0       28.0       6.0     
2       2018   1  2018-09-06     0.0       0.0       26.0      12.0     
        2018   2  2018-09-16     1.0       1.0        5.0      31.0     

              Opp2_pnts  Off_1stD  Off_TotYd  Def_1stD_All  Def_TotYd_All  
Tm_name Year                                                               
1       2018    24.0       14.0      213.0        30.0          429.0      
        2018    34.0        5.0      137.0        24.0          432.0      
        2018    16.0       13.0      221.0        21.0          316.0      
        2018    20.0       18.0      263.0        19.0          331.0      
        2018    18.0       10.0      220.0        33.0          447.0      
        2018    27.0       16.0      268.0        20.0          411.0      
        2018    45.0       14.0      223.0        15.0          309.0      
        2018    15.0       20.0      321.0        16.0          267.0      
        2018    26.0       21.0      260.0        20.0          330.0      
        2018    23.0       13.0      282.0        19.0          325.0      
        2018    45.0       10.0      149.0        30.0          414.0      
        2018    17.0       18.0      315.0        22.0          325.0      
        2018    17.0       22.0      279.0        16.0          218.0      
        2018    40.0       18.0      253.0        23.0          435.0      
        2018    31.0       15.0      263.0        33.0          461.0      
        2018    27.0       12.0      198.0        16.0          291.0      
        2017    35.0       24.0      308.0        19.0          367.0      
        2017    13.0       17.0      389.0        18.0          266.0      
        2017    28.0       22.0      332.0        15.0          273.0      
        2017    15.0       25.0      368.0        20.0          305.0      
        2017    34.0       16.0      307.0        19.0          419.0      
        2017    33.0       23.0      432.0        21.0          412.0      
        2017    33.0       10.0      196.0        28.0          425.0      
        2017    10.0       20.0      368.0        17.0          329.0      
        2017    22.0       24.0      290.0        14.0          287.0      
        2017    31.0       17.0      292.0        22.0          357.0      
        2017    24.0       20.0      344.0        19.0          219.0      
        2017    32.0       19.0      305.0        18.0          303.0      
        2017     7.0       16.0      261.0        14.0          204.0      
        2017    20.0       19.0      286.0        14.0          218.0      
...                 ...       ...        ...           ...            ...  
        2016    21.0       17.0      288.0        25.0          286.0      
        2016     3.0       28.0      396.0        11.0          230.0      
        2016     6.0       23.0      443.0        11.0          257.0      
        2016    30.0       22.0      340.0        19.0          349.0      
        2016    20.0       26.0      443.0        15.0          281.0      
        2016    30.0       24.0      290.0        16.0          217.0      
        2016    38.0       23.0      332.0        28.0          360.0      
        2016    23.0       24.0      369.0        19.0          333.0      
        2016    26.0       21.0      300.0        15.0          314.0      
        2016    48.0       26.0      425.0        33.0          488.0      
        2016    31.0       21.0      370.0        24.0          391.0      
        2016     6.0       21.0      344.0         9.0          123.0      
        2015    19.0       25.0      427.0        18.0          408.0      
        2015    23.0       21.0      300.0        18.0          335.0      
        2015     7.0       28.0      446.0        10.0          156.0      
        2015    24.0       26.0      447.0        13.0          328.0      
        2015    17.0       15.0      345.0        29.0          435.0      
        2015    25.0       21.0      469.0        14.0          310.0      
        2015    18.0       21.0      414.0        18.0          276.0      
        2015    20.0       25.0      491.0        16.0          254.0      
        2015    32.0       30.0      451.0        18.0          343.0      
        2015    31.0       21.0      383.0        24.0          377.0      
        2015    13.0       26.0      337.0        17.0          368.0      
        2015     3.0       29.0      524.0         9.0          212.0      
        2015    20.0       22.0      393.0        23.0          389.0      
        2015    17.0       28.0      493.0        19.0          424.0      
        2015     8.0       19.0      381.0        16.0          178.0      
        2015    36.0       16.0      232.0        22.0          354.0      
2       2018    18.0       16.0      299.0        18.0          232.0      
        2018    24.0       23.0      442.0        27.0          439.0

- Я не могу просто объединить их, я пробовал много разных способов, это никогда не получается, поэтому я решил, что смогу попасть в список и создать кадр данных из массива. Массив выглядит так, как я хочу, но когда я помещаю его в массив данных, он этого не делает {проверьте ниже}

app = []

for row in result.itertuples():
    app.append(row)
    for row_1 in result2.itertuples():
        if row[0] == row_1[0]:
            app.append(row_1)

9.0, Off_1stD=25.0, Off_TotYd=427.0, Def_1stD_All=18.0, Def_TotYd_All=408.0)
Pandas(Index=(1, 2015), Week='2', Date=Timestamp('2015-09-20 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=6.0, Tm_Pnts=48.0, Opp2_pnts=23.0, Off_1stD=21.0, Off_TotYd=300.0, Def_1stD_All=18.0, Def_TotYd_All=335.0)
Pandas(Index=(1, 2015), Week='3', Date=Timestamp('2015-09-27 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=29.0, Tm_Pnts=47.0, Opp2_pnts=7.0, Off_1stD=28.0, Off_TotYd=446.0, Def_1stD_All=10.0, Def_TotYd_All=156.0)
Pandas(Index=(1, 2015), Week='4', Date=Timestamp('2015-10-04 00:00:00'), win_loss=0.0, home_away=1.0, Opp1_team=nan, Tm_Pnts=22.0, Opp2_pnts=24.0, Off_1stD=26.0, Off_TotYd=447.0, Def_1stD_All=13.0, Def_TotYd_All=328.0)
Pandas(Index=(1, 2015), Week='5', Date=Timestamp('2015-10-11 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=11.0, Tm_Pnts=42.0, Opp2_pnts=17.0, Off_1stD=15.0, Off_TotYd=345.0, Def_1stD_All=29.0, Def_TotYd_All=435.0)
Pandas(Index=(1, 2015), Week='6', Date=Timestamp('2015-10-18 00:00:00'), win_loss=0.0, home_away=0.0, Opp1_team=27.0, Tm_Pnts=13.0, Opp2_pnts=25.0, Off_1stD=21.0, Off_TotYd=469.0, Def_1stD_All=14.0, Def_TotYd_All=310.0)
Pandas(Index=(1, 2015), Week='7', Date=Timestamp('2015-10-26 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=3.0, Tm_Pnts=26.0, Opp2_pnts=18.0, Off_1stD=21.0, Off_TotYd=414.0, Def_1stD_All=18.0, Def_TotYd_All=276.0)
Pandas(Index=(1, 2015), Week='8', Date=Timestamp('2015-11-01 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=8.0, Tm_Pnts=34.0, Opp2_pnts=20.0, Off_1stD=25.0, Off_TotYd=491.0, Def_1stD_All=16.0, Def_TotYd_All=254.0)
Pandas(Index=(1, 2015), Week='10', Date=Timestamp('2015-11-15 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=28.0, Tm_Pnts=39.0, Opp2_pnts=32.0, Off_1stD=30.0, Off_TotYd=451.0, Def_1stD_All=18.0, Def_TotYd_All=343.0)
Pandas(Index=(1, 2015), Week='11', Date=Timestamp('2015-11-22 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=7.0, Tm_Pnts=34.0, Opp2_pnts=31.0, Off_1stD=21.0, Off_TotYd=383.0, Def_1stD_All=24.0, Def_TotYd_All=377.0)
Pandas(Index=(1, 2015), Week='12', Date=Timestamp('2015-11-29 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=29.0, Tm_Pnts=19.0, Opp2_pnts=13.0, Off_1stD=26.0, Off_TotYd=337.0, Def_1stD_All=17.0, Def_TotYd_All=368.0)
Pandas(Index=(1, 2015), Week='13', Date=Timestamp('2015-12-06 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=nan, Tm_Pnts=27.0, Opp2_pnts=3.0, Off_1stD=29.0, Off_TotYd=524.0, Def_1stD_All=9.0, Def_TotYd_All=212.0)
Pandas(Index=(1, 2015), Week='14', Date=Timestamp('2015-12-10 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=20.0, Tm_Pnts=23.0, Opp2_pnts=20.0, Off_1stD=22.0, Off_TotYd=393.0, Def_1stD_All=23.0, Def_TotYd_All=389.0)
Pandas(Index=(1, 2015), Week='15', Date=Timestamp('2015-12-20 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=26.0, Tm_Pnts=40.0, Opp2_pnts=17.0, Off_1stD=28.0, Off_TotYd=493.0, Def_1stD_All=19.0, Def_TotYd_All=424.0)
Pandas(Index=(1, 2015), Week='16', Date=Timestamp('2015-12-27 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=12.0, Tm_Pnts=38.0, Opp2_pnts=8.0, Off_1stD=19.0, Off_TotYd=381.0, Def_1stD_All=16.0, Def_TotYd_All=178.0)
Pandas(Index=(1, 2015), Week='17', Date=Timestamp('2015-01-03 00:00:00'), win_loss=0.0, home_away=1.0, Opp1_team=28.0, Tm_Pnts=6.0, Opp2_pnts=36.0, Off_1stD=16.0, Off_TotYd=232.0, Def_1stD_All=22.0, Def_TotYd_All=354.0)
Pandas(Index=(1, 2016), W=7.0, L=8.0, W_L_Pct=0.469, PD=56.0, MoV=3.5, SoS=-1.9, SRS=1.6, OSRS=2.4, DSRS=-0.8)
Pandas(Index=(1, 2016), Week=1, Date=Timestamp('2016-09-11 00:00:00'), win_loss=0.0, home_away=1.0, Opp1_team=21.0, Tm_Pnts=21.0, Opp2_pnts=23.0, Off_1stD=21.0, Off_TotYd=344.0, Def_1stD_All=19.0, Def_TotYd_All=363.0)
Pandas(Index=(1, 2016), Week=2, Date=Timestamp('2016-09-18 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=30.0, Tm_Pnts=40.0, Opp2_pnts=7.0, Off_1stD=20.0, Off_TotYd=416.0, Def_1stD_All=21.0, Def_TotYd_All=306.0)
Pandas(Index=(1, 2016), Week=3, Date=Timestamp('2016-09-25 00:00:00'), win_loss=0.0, home_away=0.0, Opp1_team=4.0, Tm_Pnts=18.0, Opp2_pnts=33.0, Off_1stD=25.0, Off_TotYd=348.0, Def_1stD_All=16.0, Def_TotYd_All=297.0)
Pandas(Index=(1, 2016), Week=4, Date=Timestamp('2016-10-02 00:00:00'), win_loss=0.0, home_away=1.0, Opp1_team=18.0, Tm_Pnts=13.0, Opp2_pnts=17.0, Off_1stD=26.0, Off_TotYd=420.0, Def_1stD_All=12.0, Def_TotYd_All=288.0)
Pandas(Index=(1, 2016), Week=5, Date=Timestamp('2016-10-06 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=29.0, Tm_Pnts=33.0, Opp2_pnts=21.0, Off_1stD=17.0, Off_TotYd=288.0, Def_1stD_All=25.0, Def_TotYd_All=286.0)
Pandas(Index=(1, 2016), Week=6, Date=Timestamp('2016-10-17 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=24.0, Tm_Pnts=28.0, Opp2_pnts=3.0, Off_1stD=28.0, Off_TotYd=396.0, Def_1stD_All=11.0, Def_TotYd_All=230.0)
Pandas(Index=(1, 2016), Week=7, Date=Timestamp('2016-10-23 00:00:00'), win_loss=nan, home_away=1.0, Opp1_team=28.0, Tm_Pnts=6.0, Opp2_pnts=6.0, Off_1stD=23.0, Off_TotYd=443.0, Def_1stD_All=11.0, Def_TotYd_All=257.0)
Pandas(Index=(1, 2016), Week=8, Date=Timestamp('2016-10-30 00:00:00'), win_loss=0.0, home_away=0.0, Opp1_team=5.0, Tm_Pnts=20.0, Opp2_pnts=30.0, Off_1stD=22.0, Off_TotYd=340.0, Def_1stD_All=19.0, Def_TotYd_All=349.0)
Pandas(Index=(1, 2016), Week=10, Date=Timestamp('2016-11-13 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=29.0, Tm_Pnts=23.0, Opp2_pnts=20.0, Off_1stD=26.0, Off_TotYd=443.0, Def_1stD_All=15.0, Def_TotYd_All=281.0)
Pandas(Index=(1, 2016), Week=11, Date=Timestamp('2016-11-20 00:00:00'), win_loss=0.0, home_away=0.0, Opp1_team=20.0, Tm_Pnts=24.0, Opp2_pnts=30.0, Off_1stD=24.0, Off_TotYd=290.0, Def_1stD_All=16.0, Def_TotYd_All=217.0)
Pandas(Index=(1, 2016), Week=12, Date=Timestamp('2016-11-27 00:00:00'), win_loss=0.0, home_away=0.0, Opp1_team=2.0, Tm_Pnts=19.0, Opp2_pnts=38.0, Off_1stD=23.0, Off_TotYd=332.0, Def_1stD_All=28.0, Def_TotYd_All=360.0)
Pandas(Index=(1, 2016), Week=13, Date=Timestamp('2016-12-04 00:00:00'), win_loss=1.0, home_away=1.0, Opp1_team=32.0, Tm_Pnts=31.0, Opp2_pnts=23.0, Off_1stD=24.0, Off_TotYd=369.0, Def_1stD_All=19.0, Def_TotYd_All=333.0)
Pandas(Index=(1, 2016), Week=14, Date=Timestamp('2016-12-11 00:00:00'), win_loss=0.0, home_away=0.0, Opp1_team=19.0, Tm_Pnts=23.0, Opp2_pnts=26.0, Off_1stD=21.0, Off_TotYd=300.0, Def_1stD_All=15.0, Def_TotYd_All=314.0)
Pandas(Index=(1, 2016), Week=15, Date=Timestamp('2016-12-18 00:00:00'), win_loss=0.0, home_away=1.0, Opp1_team=22.0, Tm_Pnts=41.0, Opp2_pnts=48.0, Off_1stD=26.0, Off_TotYd=425.0, Def_1stD_All=33.0, Def_TotYd_All=488.0)
Pandas(Index=(1, 2016), Week=16, Date=Timestamp('2016-12-24 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=28.0, Tm_Pnts=34.0, Opp2_pnts=31.0, Off_1stD=21.0, Off_TotYd=370.0, Def_1stD_All=24.0, Def_TotYd_All=391.0)
Pandas(Index=(1, 2016), Week=17, Date=Timestamp('2016-01-01 00:00:00'), win_loss=1.0, home_away=0.0, Opp1_team=18.0, Tm_Pnts=44.0, Opp2_pnts=6.0, Off_1stD=21.0, Off_TotYd=344.0, Def_1stD_All=9.0, Def_TotYd_All=123.0)....

это настройка так, как я хотел бы, чтобы каждый год начинался с года средних чисел подряд, за которыми следовали 17 строк статистики по каждой игре того года .--- теперь, когда я пытаюсь вставить в DataFrame

new = pd.DataFrame(app, index=["Tm_name", "Year"])
AssertionError: 10 cols passed, passed data had 12 cols

Может кто-нибудь, пожалуйста, помогите мне, я играл с этим в течение 2 недель, пытался сделать мультииндексирование, слияния различий, конкататы, просто не могу, чтобы он выглядел как Массив APP и не имел дубликатов ...

Еще раз спасибо

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...