Панды json_normalize не выравнивает все вложенные поля - PullRequest
0 голосов
/ 17 января 2019

Я анализирую файл json и хочу преобразовать вложенный файл ввода json в плоский фрейм данных на python. Есть ли какой-нибудь метод python, который управляет этим? или я должен создать пользовательскую функцию для этого? Не могли бы вы привести пример для решения этой проблемы?

Я попробовал функцию json_normalize, а также попробовал другое решение: вложенный для извлечения операторов элемент за элементом на каждом вложенном уровне

d =  pd.read_json('test 1.json', lines=True)
from pandas.io.json import json_normalize
d2=json_normalize(d['track])

Второй вариант, который я пробовал:

for index, row in d.iterrows():
  for element in row['track']:
    if element == "features":
        print(row['track']['features'])

Содержимое файла json:

{ "_id" : { "$oid" : "5b9058462f38434ab0d85cd3" }, "user_day_code" : "ead1db07fa526e19fe237115d5516fbdc5acb99057b885e8f662a147990b3c4b", "idplug_base" : 5, "track" : { "type" : "FeatureCollection", "features" : [ { "geometry" : { "type" : "Point", "coordinates" : [ -3.7073786, 40.4237274997222 ] }, "type" : "Feature", "properties" : { "var" : "28015,ES,Madrid,Madrid,CALLE SAN BERNARDO 38,Madrid", "speed" : 1.75, "secondsfromstart" : 205 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.709896, 40.4191897997222 ] }, "type" : "Feature", "properties" : { "var" : "28013,ES,Madrid,Madrid,CUSTA SANTO DOMINGO 6,Madrid", "speed" : 4.63, "secondsfromstart" : 85 } } ] }, "user_type" : 1, "idunplug_base" : 17, "travel_time" : 263, "idunplug_station" : 40, "ageRange" : 0, "idplug_station" : 16, "unplug_hourTime" : { "$date" : "2018-09-01T01:00:00.000+0200" }, "zip_code" : "" }
{ "_id" : { "$oid" : "5b9058462f38434ab0d85ce9" }, "user_day_code" : "420d9e220bd8816681162e15e9afcb1c69c5a756090728701083c5c0b23502f2", "idplug_base" : 12, "track" : { "type" : "FeatureCollection", "features" : [ { "geometry" : { "type" : "Point", "coordinates" : [ -3.7022001, 40.4052982997222 ] }, "type" : "Feature", "properties" : { "var" : "28012,ES,Madrid,Madrid,GTA EMBAJADORES,Madrid", "speed" : 0.33, "secondsfromstart" : 351 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.698618, 40.4061700997222 ] }, "type" : "Feature", "properties" : { "var" : "28012,ES,Madrid,Madrid,RONDA ATOCHA 30,Madrid", "speed" : 6.36, "secondsfromstart" : 291 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.6949231, 40.4072785997222 ] }, "type" : "Feature", "properties" : { "var" : "28012,ES,Madrid,Madrid,RONDA ATOCHA,Madrid", "speed" : 4.77, "secondsfromstart" : 231 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.6920543, 40.4081501 ] }, "type" : "Feature", "properties" : { "var" : "28012,ES,Madrid,Madrid,PLAZA EMPERADOR CARLOS V 1,Madrid", "speed" : 4.38, "secondsfromstart" : 170 } } ] }, "user_type" : 1, "idunplug_base" : 26, "travel_time" : 382, "idunplug_station" : 85, "ageRange" : 2, "idplug_station" : 52, "unplug_hourTime" : { "$date" : "2018-09-01T01:00:00.000+0200" }, "zip_code" : "28009" }
{ "_id" : { "$oid" : "5b9058462f38434ab0d85ced" }, "user_day_code" : "780f5c8157efe8e6dca44dbd689817d4b126364fca917f0e668bad9e7bf96939", "idplug_base" : 1, "track" : { "type" : "FeatureCollection", "features" : [ { "geometry" : { "type" : "Point", "coordinates" : [ -3.69610249972222, 40.427829 ] }, "type" : "Feature", "properties" : { "var" : "28004,ES,Madrid,Madrid,PLAZA ALONSO MARTINEZ,Madrid", "speed" : 6.22, "secondsfromstart" : 200 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.69482799972222, 40.4282634997222 ] }, "type" : "Feature", "properties" : { "var" : "28010,ES,Madrid,Madrid,CALLE FERNANDO EL SANTO 4,Madrid", "speed" : 0, "secondsfromstart" : 140 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.69164359972222, 40.4280088 ] }, "type" : "Feature", "properties" : { "var" : "28010,ES,Madrid,Madrid,CALLE FERNANDO EL SANTO 20,Madrid", "speed" : 5.05, "secondsfromstart" : 80 } } ] }, "user_type" : 1, "idunplug_base" : 11, "travel_time" : 305, "idunplug_station" : 109, "ageRange" : 4, "idplug_station" : 58, "unplug_hourTime" : { "$date" : "2018-09-01T01:00:00.000+0200" }, "zip_code" : "28004" }
{ "_id" : { "$oid" : "5b9058462f38434ab0d85cee" }, "user_day_code" : "a225ab7b4b74954cd9fbe8cc2ec63390cd04e92cdd1a2fe1e58d42faea082b21", "idplug_base" : 1, "track" : { "type" : "FeatureCollection", "features" : [ { "geometry" : { "type" : "Point", "coordinates" : [ -3.72050759972222, 40.4277548 ] }, "type" : "Feature", "properties" : { "var" : "28008,ES,Madrid,Madrid,PASEO PINTOR ROSALES 49P,Madrid", "speed" : 0.86, "secondsfromstart" : 258 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.717881, 40.4274713 ] }, "type" : "Feature", "properties" : { "var" : "28008,ES,Madrid,Madrid,CALLE QUINTANA 17,Madrid", "speed" : 6.75, "secondsfromstart" : 199 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.7142441, 40.4297779997222 ] }, "type" : "Feature", "properties" : { "var" : "28015,ES,Madrid,Madrid,CALLE SERRANO JOVER 4D,Madrid", "speed" : 7.08, "secondsfromstart" : 139 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.71240559972222, 40.4341422997222 ] }, "type" : "Feature", "properties" : { "var" : "28015,ES,Madrid,Madrid,CALLE FERNANDO EL CATOLICO 47A,Madrid", "speed" : 5.25, "secondsfromstart" : 79 } }, { "geometry" : { "type" : "Point", "coordinates" : [ -3.7089558, 40.4340593 ] }, "type" : "Feature", "properties" : { "var" : "28015,ES,Madrid,Madrid,CALLE FERNANDO EL CATOLICO 21,Madrid", "speed" : 5.61, "secondsfromstart" : 19 } } ] }, "user_type" : 1, "idunplug_base" : 1, "travel_time" : 262, "idunplug_station" : 168, "ageRange" : 4, "idplug_station" : 120, "unplug_hourTime" : { "$date" : "2018-09-01T01:00:00.000+0200" }, "zip_code" : "28015" }

Фактические результаты: Вариант 1: не работает, и фрейм данных остается вложенным. Вариант 2: очень сложный способ

Ожидаемый результат: Плоский кадр данных, содержащий все элементы исходного json.

Пример ожидаемого плоского кадра данных:

_id                      user_day_code                                                     idplug_base  track coordinates                  var                                            speed  secondsfromstart   user_type  idunplug_base ...
5b9058462f38434ab0d85ce9 420d9e220bd8816681162e15e9afcb1c69c5a756090728701083c5c0b23502f2  12           1     -3.7022001, 40.4052982997222 28012,ES,Madrid,Madrid,GTA EMBAJADORES,Madrid  0.33   351                1          26            ...
5b9058462f38434ab0d85ce9 420d9e220bd8816681162e15e9afcb1c69c5a756090728701083c5c0b23502f2  12           2      -3.698618, 40.4061700997222 28012,ES,Madrid,Madrid,RONDA ATOCHA 30,Madrid  6.36   291                1          26            ...

...

1 Ответ

0 голосов
/ 17 января 2019

У вас есть файл строк JSON. Прочитайте его как список диктовок, а затем позвоните json_normalize. Вам нужно будет сделать несколько уровней, чтобы вывести себя из себя.

def update(a, b):
    a.update(b)
    return a

l = pd.read_json('test 1.json', lines=True).to_dict('r')
json_normalize([update(y, x) for x in l for y in x.pop('track')['features']])

Сначала прочитайте файл строк JSON, используя pd.read_json с аргументом lines=True. Переконвертируйте фрейм данных в список словарей, используя to_dict(orient='records').

l = pd.read_json('test 1.json', lines=True).to_dict('r')

Далее, для каждого подсписка x в l разверните данные в x['tracks'] вместе с их метаданными.

Например,

import copy 

dct = copy.deepcopy(l[0])
x = dct.pop('track')['features'][0]
r = {**x, **dct}   
# {'_id': {'$oid': '5b9058462f38434ab0d85cd3'},
#  'ageRange': 0,
#  'geometry': {'coordinates': [-3.7073786, 40.4237274997222], 'type': 'Point'},
#  'idplug_base': 5,
#  'idplug_station': 16,
#   ...
#  'user_day_code': 'ead1db07fa526e19fe237115d5516fbdc5acb99057b885e8f662a147990b3c4b',
#  'user_type': 1,
#  'zip_code': ''}

Мы генерируем список таких сглаженных поддиктов, а json_normalize может обработать все остальное:

json_normalize([r])

                   _id.$oid  ageRange   ...    user_type zip_code
0  5b9058462f38434ab0d85cd3         0   ...            1         

json_normalize([r]).iloc[0].T

_id.$oid                                                5b9058462f38434ab0d85cd3
ageRange                                                                       0
geometry.coordinates                              [-3.7073786, 40.4237274997222]
geometry.type                                                              Point
...
user_day_code                  ead1db07fa526e19fe237115d5516fbdc5acb99057b885...
user_type                                                                      1
zip_code                                                                        
Name: 0, dtype: object
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...