Строгая инвариантность измерения с лавой в продольных порядковых данных - PullRequest
0 голосов
/ 17 января 2019

Я не могу выяснить, почему появляется это предупреждение во время анализа инвариантности измерений с Lavaan-пакетом.

Предупреждающее сообщение: В lav_model_vcov (lavmodel = lavmodel, lavsamplestats = lavsamplestats,: Лаваан ВНИМАНИЕ: Дисперсионно-ковариационная матрица оцениваемых параметров (vcov) не представляется положительно определенным! Наименьшее собственное значение (= 1.630820e-17) близко к нулю. Это может быть признаком того, что модель не идентифицирована.

Предыдущие модели (например, сильная инвариантность с равными порогами) работали нормально.

Данные состоят из двух моментов времени: переменные с «_12» (или «_12_r») относятся к последнему моменту времени. Все наблюдаемые переменные являются порядковыми.

vars <- c(
"t3", "t4", "t5_r", "t6", "t7_r", "t8", "t9", "t10", "t11",
"t3_12", "t4_12", "t5_12_r", "t6_12", "t7_12_r", "t8_12", "t9_12", "t10_12", "t11_12",
"t30", "t31", "t32", "t30_12", "t31_12", "t32_12")

model_residual <- '
#General structure with equal loadings between timepoints
ControlT1 =~ a * t3 + b * t4 + c * t5_r + d * t6 + e * t7_r + f * t8 + g * t9 + h * t10 + i * t11
ControlT2 =~ a * t3_12 + b * t4_12 + c * t5_12_r + d * t6_12 + e * t7_12_r + f * t8_12 + g * t9_12 + h * t10_12 + i * t11_12
DemandT1 =~ t30 + t31 + t32
DemandT2 =~ t30_12 + t31_12 + t32_12

ControlT2 ~ ControlT1 + DemandT1
DemandT2 ~ DemandT1 + ControlT1



#Equal thresholds
t3 | z1*t1 + z2*t2 + z3*t3 + z4*t4 
t3_12 | z1*t1 + z2*t2 + z3*t3 + z4*t4    
t4 | z21*t1 + z22*t2 + z23*t3 + z24*t4    
t4_12 | z21*t1 + z22*t2 + z23*t3 + z24*t4    
t5_r | z31*t1 + z32*t2 + z33*t3 + z34*t4    
t5_12_r | z31*t1 + z32*t2 + z33*t3 + z34*t4    
t6 | z41*t1 + z42*t2 + z43*t3 + z44*t4    
t6_12 | z41*t1 + z42*t2 + z43*t3 + z44*t4    
t7_r | z51*t1 + z52*t2 + z53*t3 + z54*t4    
t7_12_r | z51*t1 + z52*t2 + z53*t3 + z54*t4    
t8 | z61*t1 + z62*t2 + z63*t3 + z64*t4    
t8_12 | z61*t1 + z62*t2 + z63*t3 + z64*t4    
t9 | z71*t1 + z72*t2 + z73*t3 + z74*t4    
t9_12 | z71*t1 + z72*t2 + z73*t3 + z74*t4    
t10 | z81*t1 + z82*t2 + z83*t3 + z84*t4    
t10_12 | z81*t1 + z82*t2 + z83*t3 + z84*t4    
t11 | z91*t1 + z92*t2 + z93*t3 + z94*t4    
t11_12 | z91*t1 + z92*t2 + z93*t3 + z94*t4    

t30 | z101*t1 + z102*t2 + z103*t3 + z104*t4    
t30_12 | z101*t1 + z102*t2 + z103*t3 + z104*t4    
t31 | z111*t1 + z112*t2 + z113*t3 + z114*t4    
t31_12 | z111*t1 + z112*t2 + z113*t3 + z114*t4    
t32 | z121*t1 + z122*t2 + z123*t3 + z124*t4    
t32_12 | z121*t1 + z122*t2 + z123*t3 + z124*t4 


#Equal residuals
t3 ~~ f1*t3    
t3_12 ~~ t3_12    
t4 ~~ f2*t4    
t4_12 ~~ f2*t4_12    
t5_r ~~ f3*t5_r    
t5_12_r ~~ f3*t5_12_r    
t6 ~~ f4*t6    
t6_12 ~~ f4*t6_12    
t7_r ~~ f5*t7_r    
t7_12_r ~~ f5*t7_12_r    
t8 ~~ f6*t8    
t8_12 ~~ f6*t8_12    
t9 ~~ f7*t9    
t9_12 ~~ f7*t9_12    
t10 ~~ f8*t10    
t10_12 ~~ f8*t10_12    
t11 ~~ f9*t11    
t11_12 ~~ f9*t11_12    

t30 ~~ f10*t30    
t30_12 ~~ f10*t30_12    
t31 ~~ f11*t31    
t31_12 ~~ f11*t31_12    
t32 ~~ f12*t32    
t32_12 ~~ f12*t32_12

#Other allowed correlations
t3 ~~ t3_12    
t4 ~~ t4_12    
t5_r ~~ t5_12_r    
t6 ~~ t6_12    
t7_r ~~ t7_12_r    
t8 ~~ t8_12    
t9 ~~ t9_12    
t10 ~~ t10_12    
t11 ~~ t11_12    
t30 ~~ t30_12    
t31 ~~ t31_12    
t32 ~~ t32_12    
t3 ~~ t4    
t3_12 ~~ t4_12    
t4 ~~ t5_r    
t4_12 ~~ t5_12_r    
t3_12 ~~ t5_12_r    
t3 ~~ t5_r    
t3 ~~ t4_12    
t3 ~~ t5_12_r    
t4 ~~ t3_12    
t4 ~~ t5_12_r    
t5_r ~~ t3_12    
t5_r ~~ t4_12
'

fit_residual <- sem(model_residual, data=AAA, ordered=vars)

Анализ проходит, но я подозреваю, что он недействителен из-за ошибки.

...